An indoor navigation model and its network extraction

Abstract

We propose a navigation model for indoor environments that combines a 3D geometric modeling of buildings with connection properties of spaces and semantic elements such as openings and installations. The model is an extension of the IndoorGML standard navigation module with a twofold benefit: the extension facilitated the data import from the international standard CityGML and introduced the semantics of various fixtures in indoor space of buildings making the navigation model more suitable for human needs. Several experiments have been conducted by extracting networks from CityGML data and performing a comparison with other network construction techniques. The second contribution of the paper is an algorithm for the automatic extraction of the navigation network. Such an algorithm is a hybrid solution between medial axis approaches and visibility graph approaches. Normally, medial axes approaches are a good representation of human navigation in narrow corridors, especially to avoid obstacles, but introduce distortions in open space. On the other hand, visibility approaches work better in open spaces. In our extraction technique, the resulting network takes advantages of both approaches and better mimics human beings’ navigation in indoor environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Afyouni I, Ray C, Claramunt C (2013) Spatial models for context-aware indoor navigation systems: a survey. J Spat Inf Sci 4:85–123

  2. Agrawala M, Stolte C (2001) Rendering effective route maps: improving usability through generalization. Proceedings of the ACM 28th annual conference on computer graphics and interactive techniques. ACM, New York, pp 241–249

  3. Alattas A, Zlatanova S, van Oosterom P, Chatzinikolaou E, Lemmen C, Li K-J (2017) Supporting indoor navigation using access rights to spaces based on combined use of IndoorGML and LADM models. ISPRS Int J Geo-Inf 6(12):384–405

    Article  Google Scholar 

  4. Bandi S, Thalmann D (2000) Path finding for human motion in virtual environments. Comput Geom 15:103–127

    Article  Google Scholar 

  5. Becker T, Nagel C, Kolbe TH (2009) A multilayered space-event model for navigation in indoor spaces.  In: Lee J, Zlatanova S (eds) 3D Geo-Information Sciences. Springer-Verlag, pp 61–77

  6. Billen R, Clementini E (2005) Introducing a reasoning system based on ternary projective relations. In: Fisher P (ed) Developments in Spatial Data Handling, 11th International Symposium on Spatial Data Handling. Springer-Verlag, Berlin, pp 381–394

    Chapter  Google Scholar 

  7. Boguslawski P, Gold C (2010) Euler operators and navigation of multi-shell building models. In: Neutens T, De Maeyer P (eds) Developments in 3D geo-information sciences. Lecture notes in Geoinformation and cartography. Springer, Berlin, pp 1–16

    Google Scholar 

  8. Boguslawski P, Gold C (2011) Rapid modelling of complex building interiors. In: Kolbe T, König G, Nagel C (eds) Advances in 3D geo-information sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, pp 43–56

    Chapter  Google Scholar 

  9. Clementini E (2010) Ontological impedance in 3D semantic data modeling. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII-4:97–100

  10. Clementini E (2013) Directional relations and frames of reference. GeoInformatica 17(2):235–255. https://doi.org/10.1007/s10707-011-0147-2

    Article  Google Scholar 

  11. Diakité AA, Zlatanova S (2018) Spatial subdivision of complex indoor environments for 3D indoor navigation. Int J Geogr Inf Sci 32(2):213–235

    Article  Google Scholar 

  12. Fogliaroni P, Clementini E (2015) Modeling visibility in 3D space: a qualitative frame of reference. In: Breunig M, Al-Doori M, Butwilowski E, Kuper PV, Benner J, Haefele KH (eds) 3D Geoinformation science: the selected papers of the 3D GeoInfo 2014, vol LNG&C. Springer, Berlin, pp 243–258

    Chapter  Google Scholar 

  13. Fogliaroni P, Wallgrün JO, Clementini E, Tarquini F, Wolter D (2009) A qualitative approach to localization and navigation based on visibility information. In: Stewart Hornsby K, Claramunt C, Denis M, Ligozat G (eds) Spatial information theory, 9th international conference, COSIT 2009, Aber Wrac’h, France, September 2009, vol 5756. Lecture Notes in Artificial Intelligence, vol LNCS. Springer, Berlin, pp 312–329

    Google Scholar 

  14. Jamali A, Rahman AA, Boguslawski P, Kumar P, Gold CM (2017) An automated 3D modeling of topological indoor navigation network. GeoJournal 82(1):157–170

    Article  Google Scholar 

  15. Kallmann M (2005) Path planning in triangulations. In:  Proceedings of the Workshop on Reasoning, Representation, and Learning in Computer Games, International Joint Conference on Artificial Intelligence (IJCAI). Edinburgh, Scotland, pp 49-54

  16. Khan AA, Kolbe TH (2012) Constraints and their role in subspacing for the locomotion types in indoor navigation. In: Rizos C, Dempster AG, Li B, Gallagher T (eds) 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, Sidney, Australia, pp 1-12

  17. Kim J-S, Yoo S-J, Li K-J (2014) Integrating IndoorGML and CityGML for indoor space. In: Pfoser D, Li K-J (eds) Web and wireless geographical information systems. W2GIS 2014. Lecture notes in computer science,, vol 8470. Springer, Berlin, pp 184–196

    Google Scholar 

  18. LaValle SM (2006) Planning algorithms. Cambridge University Press, New York

    Book  Google Scholar 

  19. Lee J (2001) 3D data model for representing topological relations of urban features. Paper presented at the 21st Annual ESRI International User Conference, San Diego, CA, 9-13 July 2001

  20. Lee J (2004) A spatial access-oriented implementation of a 3D GIS topological data model for urban entities. GeoInformatica 8(3):237–264

    Article  Google Scholar 

  21. Li K-J (2008) Indoor space: a new notion of space. In: Bertolotto M, Ray C, Li X (eds) Web and wireless geographical information systems. W2GIS 2008. Lecture notes in computer science, vol 5373. Springer, Berlin, pp 1–3

    Google Scholar 

  22. Li K-J, Conti G, Konstantinidis E, Zlatanova S, Bamidis P (2019) OGC IndoorGML: a standard approach for indoor maps. In: Conesa (ed) geographical and fingerprinting data to create systems for indoor positioning and indoor/outdoor navigation: challenges, experiences and technology roadmap intelligent data-centric systems, pp 187–207

    Chapter  Google Scholar 

  23. Liu L, Zlatanova S (2011) A “door-to-door” path-finding approach for indoor navigation. In: Proceedings Gi4DM 2011: GeoInformation for Disaster Management. ISPRS, Antalya, Turkey, pp 3–8

  24. Liu L, Li B, Zlatanova S, Liu H (2018) The path from BIM to a 3D indoor framework – a requirement analysis. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-4:373–378

    Article  Google Scholar 

  25. Maheshwari N, Rajan KS (2016) A semantic model to define indoor space in context of emergency evacuation. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B4:313–318

    Article  Google Scholar 

  26. Mortari F, Zlatanova S, Liu L, Clementini E (2014) “Improved geometric network model” (IGNM): a novel approach for deriving connectivity graphs for indoor navigation. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-4:45–51

    Article  Google Scholar 

  27. Musliman IA, Rahman AA, Coors V (2008) Implementing 3D network analysis in 3D GIS. ISPRS Archives 37 Part B2:913–918

  28. OGC (2012) OGC CityGML encoding standard, Document No. 12-019, 2012. http://www.opengeospatial.org/standards/citygml. Accessed 4 June 2019

  29. OGC (2014) OGC IndoorGML, document no. 14-005r5. http://www.opengeospatial.org/standards/indoorgml. Accessed 4 June 2019

  30. Park J, Ahn D, Lee J (2018) Development of data fusion method based on topological relationships using IndoorGML Core module. J Sens 2018:14

  31. Russo D, Zlatanova S, Clementini E (2014) Route directions generation using visible landmarks. In: Claramunt C, Li K-J, Zlatanova S (eds) Sixth ACM SIGSpatial international workshop on indoor spatial awareness (ISA 2014). ACM, New York, pp 1–8

  32. Taneja S, Akinci B, Garrett JH, Soibelman L (2011) Transforming IFC-based building layout information into a geometric topology network for indoor navigation assistance. Paper presented at the International Workshop on Computing in Civil Engineering, Miami

  33. Tarquini F, Clementini E (2008) Spatial relations between classes as integrity constraints. Trans GIS 12(s1):45–57. https://doi.org/10.1111/j.1467-9671.2008.01134.x

    Article  Google Scholar 

  34. Tarquini F, De Felice G, Fogliaroni P, Clementini E (2007) A qualitative model for visibility relations. In: Hertzberg J, Beetz M, Englert R (eds) 30th annual German conference on artificial intelligence (KI 2007), vol 4667. Lecture Notes in Artificial Intelligence. Springer, pp 510–513

  35. Tenbrink T, Winter S (2009) Variable granularity in route directions. Spat Cogn Comput 9(1):64–93

    Article  Google Scholar 

  36. Winter S, Hamzei E, NVd W, Ooms K (2018) A graph representation for verbal indoor route descriptions. In: Creem-Regehr S, Schöning J, Klippel A (eds) Spatial cognition XI. Lecture notes in computer science, vol 11034. Springer, Cham, pp 77–91

    Google Scholar 

  37. Xiong Q, Zhu Q, Du Z, Zlatanova S, Zhang Y, Zhou Y, Li Y (2017) Free multi-floor indoor space extraction from complex 3D building models. Earth Sci Inf 10(1):69–83

    Article  Google Scholar 

  38. Yang L, Worboys MF (2015) Generation of navigation graphs for indoor space. Int J Geogr Inf Sci 29(10):1737–1756

    Article  Google Scholar 

  39. Yao C, Rokne J (1991) A straightforward algorithm for computing the medial axis of a simple polygon. Int J Comput Math 39(1–2):51–60

    Article  Google Scholar 

  40. Yuan W, Schneider M (2010) Supporting 3D route planning in indoor space based on the LEGO representation. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness (ISA '10). ACM, New York, pp 16–23

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eliseo Clementini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mortari, F., Clementini, E., Zlatanova, S. et al. An indoor navigation model and its network extraction. Appl Geomat 11, 413–427 (2019). https://doi.org/10.1007/s12518-019-00273-8

Download citation

Keywords

  • Indoor navigation
  • Networks
  • Geometric modeling
  • Medial axis
  • Visibility graph