Applied Geomatics

, Volume 10, Issue 2, pp 147–158 | Cite as

Estimation of water quality parameters using Landsat 8 images: application to Playa Colorada Bay, Sinaloa, Mexico

  • Luis Carlos González-Márquez
  • Franklin M. Torres-Bejarano
  • Clemente Rodríguez-Cuevas
  • Ana Carolina Torregroza-Espinosa
  • Jorge Antonio Sandoval-Romero
Original Paper


In this study, empirical models were generated to estimate water quality parameters, with the objective of showing the benefits of the satellite remote sensing application in the characterization of coastal waters. The study area was Playa Colorada Bay, located in the northwest of Mexico, in the eastern part of the Gulf of California. In two seasons of the year, on-site and laboratory characterizations were carried out to determine the spatial and temporal variation of phosphates (PO4), electrical conductivity (EC), total suspended solids (TSS), turbidity, and pH of water. Samplings were selected to match Landsat 8 satellite overpass in the study area. Radiometric and atmospheric corrections were applied to the images, prior to the generation of the models. The models were generated using the linear regression technique of successive steps; water quality parameters and their logarithms were used as dependent variables, and as independent variables were used corrected reflectance values of Landsat images. The results showed that the concentration of PO4 in the analyzed water samples were higher than those recommended in the Mexican ecological criteria of water quality, to protect the aquatic life of marine water in coastal areas. In autumn, PO4 was correlated with turbidity, T, pH, and TSS. The highest correlation coefficients were presented by TSS with PO4 (r = − 0.979) and pH (r = 0.958). The water quality models that were generated had coefficients of determination (R2) in the range of 0.637 to 0.955 and show the viability of the application of Landsat 8 images in the characterization of water quality parameters in Playa Colorada Bay. Models allowed the estimation of the distribution of water quality parameters over the whole bay instead of only at the sampling stations, favoring a better understanding of their spatial distribution.


Water pollution Remote sensing Eutrophication Statistical models 


  1. APHA-AWWA-WEF (2012) Standard methods for the examination of water and wastewater. In: E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri (Eds.) (22nd ed.). American Public Health Association, American Water Works Association, Water Environment FederationGoogle Scholar
  2. Berthouex PM, Brown LC (2002) Statistics for environmental engineers. Lewis Publishers, Boca RatonGoogle Scholar
  3. Bonansea M, Rodriguez MC, Pinotti L, Ferrero S (2015) Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens Environ 158:28–41. CrossRefGoogle Scholar
  4. Brezonik P, Menken KD, Bauer M (2005) Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reservoir Manage 21(4):373–382. CrossRefGoogle Scholar
  5. Chang N-B, Imen S, Vannah B (2014) Remote sensing for monitoring surface water quality status and ecosystem state in relation to the nutrient cycle: a 40-year perspective. Crit Rev Environ Sci Technol 45(July 2015):140225124012009–140225124012166. Google Scholar
  6. Chavez PS (1996) Image-based atmospheric corrections—revisited and improved. Photogramm Eng Remote Sens 62(9):1025–1036Google Scholar
  7. CLICOM. (2016). Datos climáticos diarios del CLICOM del SMN a través de su plataforma web del CICESE. Retrieved September 6, 2016, from
  8. Congedo L (2016) Semi-automatic classification plugin documentation.
  9. Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27(2):261. CrossRefGoogle Scholar
  10. DOF (1989) Criterios Ecológicos de Calidad del Agua CE- CCA-001/8. Diario Oficial de la Federación. México, 13 de diciembre de 1989.
  11. El Saadi AM, Yousry MM, Jahin HS (2014) Statistical estimation of Rosetta branch water quality using multi-spectral data. Water Sci 28(1):18–30. CrossRefGoogle Scholar
  12. Gholizadeh MH, Melesse AM, Reddi L (2016) A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors (Basel, Switzerland), 16(8), 1298. doi:
  13. González-Márquez LC, Figueroa Moreno MA., Hansen Rodríguez IR, Rodríguez Gallegos HB, Trigueros Salmerón Á (2014) Fosfatos en agua de drenaje agrícola: cuenca baja del Río Sinaloa. Ciencia Desde El Occidente, 1(2), 19–28. Retrieved from No2 2015 ARTÍCULO 3.pdf
  14. González-Márquez LC, Torres-Bejarano FM, Torregroza-Espinosa AC, Hansen-Rodríguez IR, Rodríguez-Gallegos HB (2018) Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. J S Am Earth Sci 82(March 2018):231–238. CrossRefGoogle Scholar
  15. HACH (2014) PhosVer 3 phosphate reagent powder pillows. Retrieved December 1, 2014, from
  16. Harvey ET, Kratzer S, Philipson P (2015) Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens Environ 158:417–430. CrossRefGoogle Scholar
  17. Khattab MFO, Merkel BJ (2013) Application of Landsat 5 and Landsat 7 images data for water quality mapping in Mosul Dam Lake, Northern Iraq. Arab J Geosci 7(9):3557–3573. CrossRefGoogle Scholar
  18. Kloiber SM, Brezonik PL, Olmanson LG, Bauer ME (2002) A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens Environ 82(1):38–47. CrossRefGoogle Scholar
  19. Kumar V, Sharma A, Chawla A, Bhardwaj R, Thukral AK (2016) Water quality assessment of river Beas, India, using multivariate and remote sensing techniques. Environ Monit Assess,188(3):1-10.
  20. Li Y, Zhang Y, Shi K, Zhu G, Zhou Y, Zhang Y, Guo Y (2017) Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci Total Environ 599–600:1705–1717. CrossRefGoogle Scholar
  21. Lim J, Choi M (2015) Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ Monit Assess 187(6):1–17. CrossRefGoogle Scholar
  22. Lyle Fritch PL (2003) Laguna Playa Colorada-Santa María La Reforma. Ficha Informativa de los Humedales de Ramsar (FIR). Mazatlán, Sinaloa. Retrieved from
  23. Ma R, Dai J (2005) Investigation of chlorophyll-a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake, China. Int J Remote Sens 26(13):2779–2795. CrossRefGoogle Scholar
  24. Pavelsky TM, Smith LC (2009) Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resources Research, 45(11), art. no.W11417.
  25. Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., … Zhu, Z. (2014). Remote sensing of environment Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ, 145:154–172.
  26. Sosa-Avalos R, Gaxiola-castro G, Olivos-Ortiz A, Silva-Iñiguez L (2013) Nutrientes inorgánicos y producción del fitoplancton en una laguna costera subtropical de México. Rev Biol Mar Oceanogr 48(1):143–154. CrossRefGoogle Scholar
  27. Theologou I, Patelaki M, Karantzalos K (2015) Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data? ISPRS-Int Arch Photogramm Remote Sens Spat Inf Sci XL-7-W3(1):1511–1516. CrossRefGoogle Scholar
  28. Uusitalo R, Yli-Halla M, Turtola E (2000) Suspended soil as a source of potentially bioavailable phosphorus in surface runoff waters from clay soils. Water Res 34(9):2477–2482. CrossRefGoogle Scholar
  29. Wu G, de Leeuw J, Skidmore AK, Liu Y, Prins HHT (2009) Performance of Landsat TM in ship detection in turbid waters. Int J Appl Earth Obs Geoinf 11(1):54–61. CrossRefGoogle Scholar
  30. Wu C, Wu J, Qi J, Zhang L, Huang H, Lou L, Chen Y (2010) Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int J Remote Sens 31(9):2309–2324. CrossRefGoogle Scholar
  31. Yacobi YZ, Moses WJ, Kaganovsky S, Sulimani B, Leavitt BC, Gitelson AA (2011) NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res 45(7):2428–2436. CrossRefGoogle Scholar
  32. Yunus AP, Dou J, Sravanthi N (2015) Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis. Remote Sens Appl: Soc Environ 2:11–25. Google Scholar
  33. Zhang, Y., Zhang, Y., Zha, Y., Shi, K., Zhou, Y., & Wang, M. (2015). [Remote sensing estimation of total suspended matter concentration in Xin’anjiang Reservoir using Landsat 8 data]. Huan Jing Ke Xue= Huanjing Kexue, 36(1), 56–63. Retrieved from
  34. Zheng Z, Li Y, Guo Y, Xu Y, Liu G, Du C (2015) Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China. Remote Sens 7(10):13975–13999. CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2018

Authors and Affiliations

  • Luis Carlos González-Márquez
    • 1
  • Franklin M. Torres-Bejarano
    • 2
  • Clemente Rodríguez-Cuevas
    • 3
  • Ana Carolina Torregroza-Espinosa
    • 4
  • Jorge Antonio Sandoval-Romero
    • 1
  1. 1.Department of Engineering and TechnologyUniversidad de OccidenteUnidad GuasaveMéxico
  2. 2.Department of Environmental EngineeringUniversidad de CórdobaMonteríaColombia
  3. 3.Faculty of EngineeringUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  4. 4.Faculty of EngineeringUniversidad de la CostaBarranquillaColombia

Personalised recommendations