Advertisement

Applied Geomatics

, Volume 8, Issue 1, pp 1–11 | Cite as

UAV monitoring and documentation of a large landslide

  • Gerald Lindner
  • Klaus Schraml
  • Reinfried Mansberger
  • Johannes Hübl
Original Paper

Abstract

In June 2013, heavy precipitation triggered a large earthflow of several million cubic meters in a small village in Austria. A bundle of technologies was applied to monitor and document the landslide, such as geophysical methods (geoelectrics, inclinometer, soil moisture, and soil temperature) and Global Navigation Satellite System (GNSS) measurements. Additionally, an Unmanned Aerial Vehicle (UAV) was used for the periodical assessment of the landslide process. In total, nine flights were performed with a multicopter equipped with a digital single-lens reflex camera (DSLR) that delivered several thousands of images. Based on these images and detailed GNSS measurements of the landslide area, orthophotos as well as generated Digital Surface Models (DSMs) with an accuracy of less than ±10 cm resulted. Fissure tracking, flow direction and velocity, and mass balances as well as the construction progress of the protection and mitigation measures were derived from these data sets. The application of the UAV turned out to be a cost- and time-effective tool for landslide-monitoring that provides researchers and engineers with accurate high-resolution geodata.

Keywords

Landslide UAV Monitoring DSM Unmanned Aerial Vehicle 

Notes

Acknowledgments

The authors would like to thank Georg Nagl and Fritz Zott for the technical support during fieldwork, which resulted in a productive on-site experience. Furthermore, we would like to thank the WLV for providing data (laserscans, orthophotos, GNSS measurements) and also for surveying the GCPs. Last but not least, we wish to thank all the helping hands that were involved in handling the landslide.

References

  1. Agisoft (2014) Official Agisoft Homepage. http://www.agisoft.ru. Accessed 14 Apr 2014
  2. Batut A (1890) La photographie aérienne par cerf-volant. Gauthier-Villars, ParisGoogle Scholar
  3. Bichler A, Bobrowsky P, Best M, Douma M, Hunter J, Calvert T, Burns R (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides 1(1):29–40. doi: 10.1007/s10346-003-0008-7 CrossRefGoogle Scholar
  4. Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125(4):472–484. doi: 10.1016/j.geomorph.2010.09.017 CrossRefGoogle Scholar
  5. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm 92:79–97. doi: 10.1016/j.isprsjprs.2014.02.013 CrossRefGoogle Scholar
  6. Egger J (1986) Zur Geologie der nördlichen Kalkalpen und der Flyschzone in den oberösterreichischen Voralpen zwischen Ennstal, Pechgraben und Ramingbach. Dissertation, Universität SalzburgGoogle Scholar
  7. Eisenbeiss H (2009) UAV Photogrammetry. Dissertation, Eidgenössische Technische Hochschule ZürichGoogle Scholar
  8. Geyer G (1904) Über die Granitklippe mit dem Leopold von Buch-Denkmal im Pechgraben bei Weyer. LechnerGoogle Scholar
  9. Gili JA, Corominas J, Rius J (2000) Using Global Positioning System techniques in landslide monitoring. Eng Geol 55(3):167–192. doi: 10.1016/S0013-7952(99)00127-1 CrossRefGoogle Scholar
  10. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides. doi: 10.1007/s10346-013-0436-y Google Scholar
  11. Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2010) Use of LIDAR in landslide investigations: a review. Nat Hazards 61(1):5–28CrossRefGoogle Scholar
  12. Jones LD (2006) Monitoring landslides in hazardous terrain using terrestrial LiDAR: an example from Montserrat. Q J Eng Geol Hydrogel 39(4):371–373CrossRefGoogle Scholar
  13. Lindner G (2013) Einsatz von „Unmanned Aerial Vehicles“ im Bereich des alpinen Naturgefahrenmanagements anhand von ausgewählten Beispielen. Master thesis, BOKU University of Natural Resources and Life Sciences ViennaGoogle Scholar
  14. Mazzanti P, Bozzano F, Cipriani I, Prestininzi A (2014) New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study. Landslides. doi: 10.1007//s10346-014-0469-x Google Scholar
  15. Mikrokopter (2013) Official Mikrokopter Homepage. http://www.mikrokopter.com. Accessed 1 May 2013
  16. Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S, Lapenna V (2008) Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Eng Geol 98(3-4):156–167. doi: 10.1016/j.enggeo.2008.02.008 CrossRefGoogle Scholar
  17. Newhall B (1969) Airborne camera: the world from the air and outer space. Hasting House, LondonGoogle Scholar
  18. Niethammer U, James MRR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Eng Geol 128:2–11. doi: 10.1016/j.enggeo.2011.03.012 CrossRefGoogle Scholar
  19. Oberhauser R, Bauer FK, Geologische Bundesanstalt Wien (1980) Der Geologische Aufbau Österreichs. SpringerGoogle Scholar
  20. Prokešová R, Kardoš M, Medveďová A (2010) Landslide dynamics from high-resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology 115(1-2):90–101. doi: 10.1016/j.geomorph.2009.09.033 CrossRefGoogle Scholar
  21. Przybilla HJ, Wester-Ebbinghaus W (1979) Bildflug mit ferngelenktem Kleinflugzeug. Bildmessung Und Luftbildwesen, Zeitschrift Für Photogrammetrie Und Fernerkundung XLVII(5):137–142Google Scholar
  22. Rau JY, Jhan JP, Lo CF, Lin YS (2011) Landslide Mapping using imagery acquired by a fixed-wing UAV. ISPRS J Photogramm XXXVIII-1/C22:195-200. doi: 10.5194/isprsarchives-XXXVIII-1-C22-195-2011
  23. Riedel B, Walther A (2008) InSAR processing for the recognition of landslides. Adv Geosci 14:189–194. doi: 10.5194/adgeo-14-189-2008 CrossRefGoogle Scholar
  24. Rosenberg G (1964) Die zweite Pechgraben-Enge bei Weyer (Oberösterreich). Verh Geol B-A H2:187–195Google Scholar
  25. Sauerbier M, Schrotter G, Eisenbeiss H (2006) Multi-Resolution Image-based Visualization of Archaeological Landscapes in Palpa, Peru. Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, December 4-7 2006. pp 353–359Google Scholar
  26. Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79(3-4):215–229. doi: 10.1016/j.enggeo.2005.01.015 CrossRefGoogle Scholar
  27. Stumpf A, Malet JP, Kerle N, Niethammer U, Rothmund S (2013) Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186:12–27. doi: 10.1016/j.geomorph.2012.12.010 CrossRefGoogle Scholar
  28. Stumpf A, Malet JP, Allemand P, Ulrich P (2014) Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J Photogramm 95:1–12. doi: 10.1016/j.isprsjprs.2014.05.008 CrossRefGoogle Scholar
  29. Tahar KN (2013) An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block. ISPRS J Photogramm XL-2(W2):93–98. doi: 10.5194/isprsarchives-XL-2-W2-93-2013 Google Scholar
  30. Trimble (2014) Official Trimble Homepage. http://www.trimble.com/gnssplanningonline/. Accessed 14 Aug 2014
  31. Varnes D (1978) Slope movement types and processes. In: Special report 176: Landslides: Analysis and Control. Transportation and Road Research Board, Washington, D.C. pp 11-33Google Scholar
  32. Wester-Ebbinghaus W (1980) Aerial photography by radio controlled model helicopter. Photogramm Rec 10:85–92. doi: 10.1111/j.1477-9730.1980.tb00006.x CrossRefGoogle Scholar
  33. Wolter A, Stead D, Clague JJ (2014) A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology 206:147–164. doi: 10.1016/j.geomorph.2013.10.006 CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2015

Authors and Affiliations

  1. 1.Institute of Surveying, Remote Sensing and Land InformationUniversity of Natural Resources and Life SciencesViennaAustria
  2. 2.Institute of Mountain Risk EngineeringUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations