Analysis of a relative offset between vertical datums at the North and South Islands of New Zealand


The leveling networks realized by 13 different local vertical datums were jointly readjusted at the South and North Islands of New Zealand. The relation between these two leveling networks and the Word Height System was then defined using GPS-leveling data and the EGM08 global geopotential model. In this study, we investigate the relative offset between these two vertical datum realizations. This is done based on comparison of the geometric geoid/quasigeoid heights (obtained from GPS and newly adjusted leveling data) with the regional gravimetric geoid/quasigeoid solutions. Moreover, oceanographic and geodetic models of mean dynamic topography (MDT) are used to assess the relative offset between these two vertical datum realizations through the analysis of regional spatial variations of mean sea level (MSL). The comparison of GPS-leveling data with regional gravimetric solutions reveals large systematic distortions (exceeding several decimeters across New Zealand) between the geometric and gravimetric geoid/quasigeoid heights attributed mainly to systematic errors within regional gravimetric solutions. The presence of a significant offset between the vertical datum realizations at the North and South Islands is not confirmed. The MSL difference between tide gauges in Wellington and Dunedin of ∼24 cm is estimated based on the analysis of MDT models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Abdalla A, Tenzer R (2011) The evaluation of the New Zealand’s geoid model using the KTH method. Geodesy Cartogr 37(1):5–14

    Article  Google Scholar 

  2. Abdalla A, Tenzer R (2012a) The global geopotential and regional gravimetric geoid/quasigeoid models testing using the newly adjusted levelling dataset for New Zealand. Appl Geomatics. doi:10.1007/s12518-012-0089-x

  3. Abdalla A, Tenzer R (2012b) Compilation of the regional quasigeoid model for New Zealand using the discretized integral-equation approach. J Geodetic Sci. doi:10.2478/v10156-011-0041-8

  4. Ågren J, Sjöberg LE, Kiamehr R (2009) Computation of the gravimetric geoid model over Sweden using the KTH method. J Appl Geod 3:143–153

    Google Scholar 

  5. Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83:57–68

    Article  Google Scholar 

  6. Andersen OB (2010) The DTU10 gravity field and mean sea surface. Second International Symposium of the Gravity Field of the Earth (IGFS2), Fairbanks, Alaska, 2010

  7. Blick G, Crook C, Grant D (2005) Implementation of a semi-dynamic datum for New Zealand. In: Sansò F (ed) A window on the future of geodesy. Springer, Berlin, pp 38–43

    Google Scholar 

  8. Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vítek V, Vojtíšková M (2007) The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81(2):103–110

    Article  Google Scholar 

  9. Claessens S, Hirt C, Amos MJ, Featherstone WE, Kirby JF (2011) NZGeoid09 quasigeoid model of New Zealand. Surv Rev 43(319):2–15

    Article  Google Scholar 

  10. Čunderlík R, Mikula K, Mojzeš M (2008) Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geod 82:15–29

    Article  Google Scholar 

  11. Čunderlík R, Mikula K (2009) Direct BEM for high-resolution global gravity field modelling. Studia Geoph Geod 54:219–238

    Article  Google Scholar 

  12. Dayoub N, Edwards SJ, Moore P (2012) The Gauss-Listing geopotentail value W0 and its rate from altimetric mean sea level and GRACE. J Geod. doi:10.1007/s00190-012-0547-6

  13. Gilliland J (1987) A review of the levelling networks of New Zealand. New Zealand Surveyor 271:7–15

    Google Scholar 

  14. Menemenlis D, Campin JM, Heimbach P, Hill C, Lee T, Nguyen A, Schod-lok M, Zhang H (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter 13–21

  15. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to degree 2160: EGM2008, presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008

  16. Rapp RH (1961) The orthometric height. MS Thesis, Dept of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio

  17. Ridgway KR, Dunn JR, Wilkin JL (2002) Ocean interpolation by four-dimensional weighted least squares-application to the waters around Australasia. J Atmosph Ocean Techn 19(9):1357–1375

    Article  Google Scholar 

  18. Sanchez L (2007) Definition and realisation of the SIRGAS vertical reference system within a globally unified height system, In: Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, 130, pp. 638–645

  19. Santos MC, Vaníček P, Featherstone WE, Kingdon R, Ellmann A, Martin B-A, Kuhn M, Tenzer R (2006) The relation between rigorous and Helmert’s definitions of orthometric heights. J Geod 80:691–704

    Article  Google Scholar 

  20. Scharroo R (2011) Evaluation of CNES-CLS11 mean sea surface, Tech. Rep. 11–001, Altimetrics LLC

  21. Schaeffer P, Faugere Y, Legeais FJ, Picot N (eds) (2011) The CNES CLS 2011 global mean sea surface. OST-ST, San-Diego

    Google Scholar 

  22. Sjöberg LE (1991) Refined least squares modification of Stokes formula. Manusc Geod 16:367–375

    Google Scholar 

  23. Sjöberg LE (2003a) A solution to the downward continuation effect on the geoid determined by Stokes formula. J Geod 77:94–100

    Article  Google Scholar 

  24. Sjöberg LE (2003b) A computational scheme to model geoid by the modified Stokes formula without gravity reductions. J Geod 74:255–268

    Google Scholar 

  25. Sjöberg LE (2003c) A general model of modifying Stokes formula and its least squares solution. J Geod 77:459–464

    Article  Google Scholar 

  26. Tenzer R, Klees R (2008) The choice of the spherical radial basis functions in local gravity field modelling. Stud Geophys Geodaet 52:287–304

    Article  Google Scholar 

  27. Tenzer R, Novák P (2008) Conditionality of inverse solutions to discretized integral equations in geoid modelling from local gravity data. Stud Geophys Geodaet 52:53–70

    Article  Google Scholar 

  28. Tenzer R, Novák P, Prutkin I, Ellmann A, Vajda P (2009) Far-zone contributions to the gravity field quantities by means of Molodensky’s truncation coefficients. Stud Geophys Geodaet 53:157–167

    Article  Google Scholar 

  29. Tenzer R, Novák P, Vajda P, Ellmann A, Abdalla A (2011a) Far-zone gravity field contributions corrected for the effect of topography by means of Molodensky’s truncation coefficients. Stud Geophys Geodaet 55:55–71

    Article  Google Scholar 

  30. Tenzer R, Vatrt V, Luzi G, Abdalla A, Dayoub N (2011b) Combined approach for the unification of levelling networks in New Zealand. J Geod Sci 1(4):324–332

    Google Scholar 

  31. Tenzer R, Čunderlík R, Dayoub N, Abdalla A (2012a) Application of the BEM approach for a determination of the regional marine geoid model and the mean dynamic topography in the Southwest Pacific Ocean and Tasman Sea. J Geod Sci 2(1):1–7

    Article  Google Scholar 

  32. Tenzer R, Klees R, Prutkin I (2012b) A comparison of different integral-equation-based approaches for local gravity field modeling—case study for the Canadian Rocky Mountains, pp. 381–388, In: Kenyon, Steve; Pacino, Maria Christina; Marti, Urs (eds) Geodesy for planet earth. Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August–4 September 2009, In book series: IAG Symposia, vol. 136, 1046 p, ISBN 978-3-642-20337-4, Springer, Berlin Heidelberg, (WOS); doi: 10.1007/978-3-642-20338-1_46

Download references

Author information



Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tenzer, R., Dayoub, N. & Abdalla, A. Analysis of a relative offset between vertical datums at the North and South Islands of New Zealand. Appl Geomat 5, 133–145 (2013).

Download citation


  • Geoid/quasigeoid
  • Leveling
  • Mean dynamic topography
  • Offset
  • Vertical datum