Advertisement

Applied Geomatics

, Volume 5, Issue 2, pp 87–97 | Cite as

Geospatial analysis of ecological vulnerability of coffee agroecosystems in Brazil

  • Marcelo de Carvalho AlvesEmail author
  • Fábio Moreira da Silva
  • Luciana Sanches
  • Luiz Gonsaga de Carvalho
  • Gabriel Araújo e Silva Ferraz
Original Paper

Abstract

Geographical information systems and statistics were used to characterize the climatic vulnerability of coffee agroecosystems in Brazil. Average annual mean air temperature, mean air temperature of the coldest month, and moisture index were used to characterize climatic vulnerability for Coffea arabica and Coffea canephora species cultivation based on high-resolution interpolated climate surfaces from the average of the period of 1950 to 2000 and the A2 2080 climate change scenario. Soil vulnerability for coffee cultivation was derived from soil classes 1:5,000,000 scale and slope estimated from SRTM digital elevation model at 90 m spatial resolution. Coffee tree production at municipal district level from 1990 to 2006 was used to validate the obtained results of the vulnerability of coffee agroecosystems. A coffee tree index was developed using the principal components technique, based on variables related to coffee yield, coffee harvested and coffee cultivated areas. The coffee tree fraction index explained 87.0 % of coffee tree fraction and was classified in five levels inside the municipal district boundaries using natural breaks method. Based on the adopted methodology, it was possible to observe relationship between coffee tree cultivation areas and coffee climatic vulnerability in Brazil for the scenario of 1950 to 2000. Considering A2 2080 scenario of climate change, suitable areas for coffee cultivation were moved to the states of the south and southeast of Brazil.

Keywords

Coffea arabica Coffea canephora Ecological zoning Soil and climate vulnerability Climate change 

References

  1. Agrianual (2008) Anuário da Agricultura Brasileira. Instituto FNP, São PauloGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. In: Food and Agriculture Organization of the United Nations-FAO. Irrigation and Drainage Paper, Rome, p 56Google Scholar
  3. Alves MC, Carvalho LG, Pozza EA, Alves LS, Maia JCS (2011) Ecological zoning of soybean rust, coffee rust and banana black sigatoka based on Brazilian climate changes. Procedia Environ Sci 6:35–49CrossRefGoogle Scholar
  4. Anuário (2002) Statistic coffee yearbook 2001/2002. Coffee business, Rio de JaneiroGoogle Scholar
  5. Assad ED, Evangelista BA, Silva FAM, Cunha SAR, Alves ER, Lopes TSS, Pinto HS, Zullo J Jr (2001) Agroclimatic zoning for Coffee (Coffea arabica L.) in the state of Goiás and southeastern state of Bahia, Brazil. Rev Bras Agrometeorol 9:510–518Google Scholar
  6. Assad ED, Pinto HS, Zullo J Jr, Ávila AMH (2004) Climatic changes impact in agroclimatic zonning of coffee in Brazil. Pesq Agropec Bras 39:1057–1064CrossRefGoogle Scholar
  7. Brasil (1992) Ministério da Agricultura e Reforma Agrária, Secretaria Nacional de Irrigação, Departamento Nacional de Meteorologia. Normais climatológicas (1961–1990), BrasíliaGoogle Scholar
  8. Camargo AP (1977) Zoneamento da aptidão climática para a cafeicultura de arábica e robusta no Brasil. Fundação IBGE, Recursos meio ambiente e poluiçãoGoogle Scholar
  9. Camargo AP, Pereira AR (1994) Agrometeorology of the coffee crop. Agricultural Meteorology Cam Report No. 58. World Meteorological Organization, GenevaGoogle Scholar
  10. Caramori PH, Caviglione JH, Wrege MS, Gonçalves SL, Faria RT, Androcioli Filho A, Sera T, Chaves JCD, Koguishi MS (2001) Climatic risk zoning for coffee (Coffea arabica L.) in Paraná state, Brazil. Rev Bras Agrometeorol 9:486–494Google Scholar
  11. Carvalho LG, Sediyama GC, Cecon PR, Alves HMR (2004) A regression model to predict coffee productivity in Southern Minas Gerais, Brazil. Rev Bras Eng Agríc Ambient 8:204–211CrossRefGoogle Scholar
  12. Carvalho LG, Mello CR, Alves MC, Curi N, Marques AFSM, Marques JJ (2008) Zoneamento da cana-de-açúcar e do eucalipto:aspectos geofísicos e bióticos. In: Scolforo JRS, Oliveira AD, Carvalho LMT (eds) Zoneamento Ecológico-Econômico do Estado de Minas Gerais: Zoneamento e Cenários Exploratórios, vol 1. Editora UFLA, Lavras, pp 53–60Google Scholar
  13. CGIAR (2009) Consortium for spatial information (CGIAR-CSI). Available from http://srtm.csi.cgiar.org/
  14. Crepani E, Medeiros JS, Palmeira AF, Silva EF (2008) Zoneamento ecológico-econômico. In: Florenzano TG (ed) Geomorfologia: Conceitos e Tecnologias Atuais. Oficina de Textos, São PauloGoogle Scholar
  15. Downing TE (1992) Climate Change and Vulnerable places: Global Food Security and country studies in Zimbawe, Kenya, Senegal and Chile. Research Report 1, Environmental Change Unit. University of Oxford, United KingdomGoogle Scholar
  16. EMBRAPA (1999) Sistema Brasileiro de Classificação de Solos. Centro Nacional de Pesquisa de Solos, Rio de JaneiroGoogle Scholar
  17. Evangelista AWP, Carvalho LG, Sediyama GC (2002) Climatic zoning associated to the productive potential of coffee crop in Minas Gerais State, Brazil. Rev Bras Eng Agríc Ambient 6:445–452CrossRefGoogle Scholar
  18. Evenson RE (1999) Global and local implications of biotechnology and climate change for future food supplies. Proc Natl Acad Sci USA 96:5921–5928CrossRefGoogle Scholar
  19. FAO (1998) World Reference base for soil resources. FAO, ISRIC, ISSS, RomeGoogle Scholar
  20. Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian centre for climate modelling and analysis global coupled model and its climate. Clim Dynam 16:451–467, 2000CrossRefGoogle Scholar
  21. Hansen JW (2002) Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agric Syst 74:309–330CrossRefGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. IBGE (2008) Produção agrícola municipal. Available from http://www.sidra.ibge.gov.br/
  24. IBGE (2009) Mapas interativos. Available from http://mapas.ibge.gov.br/solos/viewer.htm
  25. IPCC (2007) Summary for Policymakers. In: Parry ML, Canziani OF, Palutikof JP, Van Der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  26. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190Google Scholar
  27. Krug CA (1959) World coffee survey. FAO, RomeGoogle Scholar
  28. Mitchell N, Espie P, Hankin R (2004) Rational landscape decision-making: the use of meso-scale climatic analysis to promote sustainable land management. Land Urb Plan 64:131–140CrossRefGoogle Scholar
  29. Motha RP (2007) Development of an agricultural weather policy. Agric For Meteorol 142:303–313CrossRefGoogle Scholar
  30. Murray AT, Shyy TK (2000) Integrating attribute and space characteristics in choropleth display and spatial data mining. Int J Geogr Inf Sci 14:649–667CrossRefGoogle Scholar
  31. Parry ML, Porter JH, Carter TR (1990) Agriculture: climate change and its implications. Trends Ecol Evol 5:318–322CrossRefGoogle Scholar
  32. Pinto HS, Zullo J Jr, Assad ED, Brunini O, Alfonsi RR, Coral G (2001) Climatic risc zoning for coffee trees in the state of São Paulo, Brazil. Rev Bras Agrometeorol 9:495–500Google Scholar
  33. Salinger MJ, Stigter CJ, Das HP (2000) Agrometeorological adaptations strategies to increasing climate variability and climate change. Agric For Meteorol 103:167–184CrossRefGoogle Scholar
  34. Salinger MJ, Sivakumar MVK, Motha R (2005) Reducing vulnerability of agriculture and forestry to climate variability and change: workshop summary and recommendations. Clim Chang 70:341–362CrossRefGoogle Scholar
  35. Santos MA, Camargo MBP (2006) Calibration of an agrometeorological model for predicting coffee (Coffea arabica L.) productivity in Sao Paulo state, Brazil. Bragantia 65:173–183CrossRefGoogle Scholar
  36. Sediyama GC, Melo Junior JCF, Santos AR, Ribeiro A, Costa MH, Hamakawa PJ, Costa JMN, Costa LC (2001) Climatologial zoning for arabic coffee (Coffea arabica L.) in the state of Minas Gerais, Brazil. Rev Bras de Agrometeorol 9:501–509Google Scholar
  37. Sivakumar MVK, Gommes R, Baier W (2000) Agrometeorology and sustainable agriculture. Agric For Meteorol 103:11–26CrossRefGoogle Scholar
  38. Slocum TA, Mcmaster RB, Kessler FC, Howard HH (2009) Thematic cartography and visualization. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  39. Thornthwaite CW, Mather JR (1955) The water balance. Publications in climatology, vol VIII. Laboratory of Climatology, Drexel Institute of Technology, Centerton, NJGoogle Scholar
  40. Vianello RL, Alves AR (1991) Meteorologia básica e aplicações. Imprensa Universitária/UFV, ViçosaGoogle Scholar
  41. Wackernagel H (2003) Multivariate geostatistics. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fotogrammetria e Topografia (SIFET) 2013

Authors and Affiliations

  • Marcelo de Carvalho Alves
    • 1
    Email author
  • Fábio Moreira da Silva
    • 2
  • Luciana Sanches
    • 3
  • Luiz Gonsaga de Carvalho
    • 2
  • Gabriel Araújo e Silva Ferraz
    • 4
  1. 1.Department of Soil and Rural EngineeringFederal University of Mato Grosso, Faculty of Agronomy and Veterinary MedicineCuiabáBrazil
  2. 2.Engineering DepartmentFederal University of LavrasLavrasBrazil
  3. 3.Department of Environmental and Sanitary EngineeringFederal University of Mato Grosso, Faculty of Agronomy and Veterinary MedicineCuiabáBrazil
  4. 4.Engineering DepartmentRural Federal University of Rio de JaneiroSeropédicaBrazil

Personalised recommendations