Skip to main content
Log in

Dam impacts on plant communities based on sediment delivery ratio (InVEST-SDR): Wadi Ma’awil catchment of Oman

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Dams cause loss of habitat due to the interception of sediment transport downstream. The impact of the Wadi Ma’awil watershed dam in Oman on the distribution and pattern of plant communities has not been fully investigated. Identifying and prioritizing critical erosion and trapped sediment areas are important aspects for policymakers. The aim of this study was to assess the impact of the Wadi Ma’awil watershed dam on sediment transport across the watershed and its consequences on the pattern and distribution of plant communities. This study used the integrated valuation of environmental services and the tradeoffs sediment delivery ratio (InVEST-SDR) model to provide spatially explicit estimates of soil loss and sediment yield. The results showed that Sub-watershed 10 after the dam area exhibited the lowest sediment export, with a value of 0.36 ton/ha, while Sub-watershed 2 at the dam area had sediment retention of 1.02 ton/ha among the top five sub-watersheds. Around 1.51 ton/ha of sediments was trapped inside the dam at Sub-watershed 2 and did not reach the downstream area at Sub-watershed 10. The dam had a significant effect on the distribution, density, and communities of the small plant. The area downstream of the dam Sub-watershed 10 showed the lowest mean plant density (3.15) compared to the area upstream of the dam Sub-watershed s 3, 4, and 5 (19.65) or the dam area Sub-watershed 2 (42.9). These findings suggest a need to evaluate dam capacity, as sediment traps could hold risks that could decrease dam functionality and life span, jeopardizing dam storage and flood protection capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be available in request.

References

  • Abdalla OA, Al-Rawahi AS (2013) Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: example of AlKhod. Oman Environ Earth Sci 69(6):1951–1962

    Article  Google Scholar 

  • Abiye W (2022) Soil and water conservation nexus agricultural productivity in Ethiopia. Advances in Agriculture, 2022

  • Abushandi E, Abualkishik A (2020) Shoreline erosion assessment modelling for Sohar Region: measurements, analysis, and scenario. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-61033-y

    Article  CAS  Google Scholar 

  • Al Barwani A, Helmi T (2006) Sea water intrusion in a coastal aquifer: a case study for the area between Seeb and Suwaiq, Sultanate of Oman. J Agric Mar Sci [JAMS] 11:55–69

    Article  Google Scholar 

  • Al Ruheili AM, Boluwade A (2021) Quantifying coastal shoreline erosion due to climatic extremes using remote-sensed estimates from Sentinel-2A data. Environmental Processes, 1–20

  • Alam H, Khattak JZK, Ppoyil SBT, Kurup SS, Ksiksi TS (2017) Landscaping with native plants in the UAE: a review. Emirates J Food Agric, 729–741

  • Al-Hatrushi SM (2013) Monitoring of the shoreline change using remote sensing and GIS: a case study of Al Hawasnah tidal inlet, Al Batinah coast, Sultanate of Oman. Arab J Geosci 6(5):1479–1484. https://doi.org/10.1007/s12517-011-0424-2

    Article  Google Scholar 

  • Al-Ismaily SS, Al-Maktoumi AK, Kacimov AR, Al-Saqri SM, Al-Busaidi HA, Al-Haddabi MH (2013) Morphed block-crack preferential sedimentation in a reservoir bed: a smart design and evolution in nature. Hydrol Sci J 58(8):1779–1788

  • Al-Ismaily SS, Al-Maktoumi AK, Kacimov AR, Al-Saqri SM, Al-Busaidi HA (2015) Impact of a recharge dam on the hydropedology of arid zone soils in Oman: anthropogenic formation factor. J Hydrol Eng 20(4). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000886

  • Al-Maktoumi A, Kacimov A, Al-Ismaily S, Al-Busaidi H, Al-Saqri S (2015) Infiltration into two-layered soil: the green–ampt and averyanov models revisited. Transp Porous Media 109(1):169–193

    Article  CAS  Google Scholar 

  • Al-Maktoumi A, Kacimov A, Al-Busaidi H, Al-Ismaily S, Al-Mayahi A, Al-Khanbashi S, Al-Sulaimi A (2020) Enhancement of infiltration rate of clogged porous beds in the vicinity of dams in arid zones by the roots of indigenous Ziziphus spina-christ trees. Hydrol Process 34(22):4226–4238

    Article  Google Scholar 

  • Al-Maktoumi A (2018) Silting of recharge dams in Oman: problems and management strategies (4). SQU, Oman

  • Al-Robai SA, Mohamed HA, Howladar SM, Ahmed AA (2017) Vegetation structure and species diversity of Wadi Turbah Zahran, Albaha area, southwestern Saudi Arabia. Ann Agric Sci 62(1):61–69. https://doi.org/10.1016/j.aoas.2017.04.001

    Article  Google Scholar 

  • Al-Saqri S, Al-Maktoumi A, Al-Ismaily S, Kacimov A, Al-Busaidi H (2016) Hydropedology and soil evolution in explaining the hydrological properties of recharge dams in arid zone environments. Arab J Geosci 9:1–12

    Article  CAS  Google Scholar 

  • Aneseyee AB, Elias E, Soromessa T, Feyisa GL (2020) Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin Ethiopia. Sci Total Environ 728:138776. https://doi.org/10.1016/j.scitotenv.2020.138776

    Article  CAS  Google Scholar 

  • Ataei P, Khatir A, Izadi N, Frost KJ (2017) Environmental impact assessment of artificial feeding plans: the Hammami plain in Iran. EQA-Int J Environ Qual 27:19–38

    Google Scholar 

  • Bautista S, Mayor AG, Bourakhouadar J, Bellot J (2007) Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 10(6):987–998. https://doi.org/10.1007/s10021-007-9074-3

    Article  Google Scholar 

  • Bednarek AT (2001) Undamming rivers: a review of the ecological impacts of dam removal. Environ Manage 27(6):803–814

    Article  CAS  Google Scholar 

  • Berbeć AK, Staniak M, Feledyn-Szewczyk B, Kocira A, Stalenga J (2020) Organic but also low-input conventional farming systems support high biodiversity of weed species in winter cereals. Agriculture 10(9):413. https://doi.org/10.3390/agriculture10090413

    Article  CAS  Google Scholar 

  • Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena 75(3):268–277. https://doi.org/10.1016/j.catena.2008.07.006

    Article  Google Scholar 

  • Bouaroudj S, Menad A, Bounamous A, Ali-Khodja H, Gherib A, Weigel DE, Chenchouni H (2019) Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere 219:76–88. https://doi.org/10.1016/j.chemosphere.2018.11.193

    Article  CAS  Google Scholar 

  • Bunn SE, Thoms MC, Hamilton SK, Capon SJ (2006) Flow variability in dryland rivers: boom, bust and the bits in between. River Res Appl 22(2):179–186

    Article  Google Scholar 

  • Carlin J, Addison J, Wagner A, Schwartz V, Hayward J, Severin V (2019) Variability in shelf sedimentation in response to fluvial sediment supply and coastal erosion over the past 1,000 years in Monterey Bay, CA. United States Front Earth Sci 7:113

    Article  Google Scholar 

  • Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188:31–41

    Article  Google Scholar 

  • Chen S, Chen B, Su M (2011) An estimation of ecological risk after dam construction in LRGR, China: changes on heavy metal pollution and plant distribution. Procedia Environ Sci 5:153–159. https://doi.org/10.1016/j.proenv.2011.03.061

    Article  CAS  Google Scholar 

  • Chitrakar P, Sana A (2016) Groundwater flow and solute transport simulation in Eastern Al Batinah Coastal Plain, Oman: case study. J Hydrol Eng 21(2):05015020

    Article  Google Scholar 

  • da Silva GCX, Medeiros de Abreu CH, Ward ND, Belúcio LP, Brito DC, Cunha HFA, da Cunha AC (2020) Environmental impacts of dam reservoir filling in the East Amazon. Front Water 2:11. https://doi.org/10.3389/frwa.2020.00011

    Article  Google Scholar 

  • Darwish KhM, Abdel Kawy WAM, Afifi AA, Zölitz R (2016) Estimating the rainfall erosivity for management planning in the Eastern Desert, Egypt. Geocarto Int 31(10):1123–1141. https://doi.org/10.1080/10106049.2015.1120352

    Article  Google Scholar 

  • Davudirad AA, Sadeghi SH, Sadoddin A (2016) The impact of development plans on hydrological changes in the Shazand Watershed. Iran Land Degrad Dev 27(4):1236–1244

    Article  Google Scholar 

  • dos Santos EA, Medeiros MB, Ferreira EJ, Simon MF, Oliveira WL, Costa FR (2020) Palm distribution patterns in the southwestern Brazilian Amazon: impact of a large hydroelectric dam. Forest Ecol Manage 463:118032. https://doi.org/10.1016/j.foreco.2020.118032

    Article  Google Scholar 

  • Faber S, Al-Maktoumi A, Kacimov A, Al-Busaidi H, Al-Ismaily S, Al-Belushi M (2016) Migration and deposition of fine particles in a porous filter and alluvial deposit: laboratory experiments. Arab J Geosci 9(4):293

    Article  Google Scholar 

  • Fedda E, Al-Abri F, Al-Shabibi F, Al-Hinai H (2019) Using geomatics techniques to study population growth and urban sprawl on Wilayat Nakhal in South of Al-Batinah - Sultanate of Oman. OmanThe international conference of Population and Sustainable Development in Sultanate of Oman.At: Held at Sultan Qaboos University Sultanate of Oman ,14–16 October 2019

  • Forsberg BR, Melack JM, Dunne T, Barthem RB, Goulding M, Paiva RC, Weisser S (2017) The potential impact of new Andean dams on Amazon fluvial ecosystems. PloS ONE 12(8):e0182254

  • Fuggle R, Smith TW (2000) Large dams in water and energy resource development in The People’s Republic of China (PRC). Country review paper prepared as an input to the World Commission on Dams, Cape Town

  • Ghilishli F, Mirdeilami SZ, Moradi E, Pessarakli M (2016) Effects of fertilizers on plant diversity, density, and uniformity in Golestan rangelands. J Plant Nutr 39(10):1441–1448. https://doi.org/10.1080/01904167.2015.1109118

    Article  CAS  Google Scholar 

  • Graf WL (2006) Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79(3–4):336–360. https://doi.org/10.1016/j.geomorph.2006.06.022

    Article  Google Scholar 

  • Grumbine RE, Xu J (2011) Mekong hydropower development. Science 332(6026):178–179

    Article  CAS  Google Scholar 

  • Grundmann J, Schütze N, Schmitz GH, Al-Shaqsi S (2012) Towards an integrated arid zone water management using simulation-based optimisation. Environ Earth Sci 65(5):1381–1394. https://doi.org/10.1007/s12665-011-1253-z

    Article  Google Scholar 

  • Hadidi A, Holzbecher E, Molenaar RE (2020) Flood mapping in face of rapid urbanization: a case study of Wadi Majraf-Manumah, Muscat. Sultanate Oman. Urban Water J 17(5):407–415. https://doi.org/10.1080/1573062X.2020.1713172

    Article  Google Scholar 

  • Hadidi A, Holzbecher E, Zirulia A (2019) Trends in groundwater observation data and implications. In 13th Gulf Water Conference–Water in the GCC: Challenges and Innovative Solutions (pp. 12–14)

  • Hamel P, Chaplin-Kramer R, Sim S, Mueller C (2015) A new approach to modeling the sediment retention service (InVEST 3.0): case study of the Cape Fear catchment, North Carolina, USA. Sci Total Environ 524:166–177. https://doi.org/10.1016/j.scitotenv.2015.04.027

    Article  CAS  Google Scholar 

  • Hammer O, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Haselsteiner R (2011) Flood protection and groundwater recharge in the Batinah region in Oman. International Conference on Drought Management Strategies in Arid and Semi-Arid Regions Muscat (Oman), Ministry of Regional Municipalities and Water Resources, Sultanate of Oman; December 11–14, 2011

  • Hooke JM (2016) Morphological impacts of flow events of varying magnitude on ephemeral channels in a semiarid region. Geomorphology 252:128–143

    Article  Google Scholar 

  • Issa IE, Al-Ansari N, Knutsson S, Sherwany G (2015) Monitoring and evaluating the sedimentation process in Mosul Dam Reservoir using trap efficiency approaches. Engineering 7(4):190–202. https://doi.org/10.4236/eng.2015.74015

    Article  Google Scholar 

  • Jakubínský J, Pechanec V, Procházka J, Cudlín P (2019) Modelling of soil erosion and accumulation in an agricultural landscape—a comparison of selected approaches applied at the small stream basin level in the Czech Republic. Water 11(3):404

    Article  Google Scholar 

  • Jamshidi Bakhtar A, Marvie Mohadjer MR, Sagheb Talebi K, Namiranian M, Maroufi H (2013) Alteration of plant diversity after fire in Zagros forest stands, case study: Marivan forests. Iran J Forest Poplar Res 21(3):529–541. https://doi.org/10.22092/IJFPR.2014.4731

    Article  Google Scholar 

  • Kano Y, Dudgeon D, Nam S, Samejima H, Watanabe K, Grudpan C, Grudpan J, Utsugi K (2016) Impacts of dams and global warming on fish biodiversity in the Indo-Burma Hotspot. Plos One 11(8):e0160151. https://doi.org/10.1371/journal.pone.0160151

    Article  CAS  Google Scholar 

  • Kantoush SA, Saber M, Abdel-Fattah M, Sumi T (2022) Integrated strategies for the management of wadi flash floods in the Middle East and North Africa (MENA) Arid Zones: the ISFF Project. In Wadi Flash Floods (pp. 3–34). Springer, Singapore

  • Kingsford RT, Johnson W (1998) Impact of water diversions on colonially-nesting waterbirds in the Macquarie Marshes of arid Australia. Colonial Waterbirds 159–170

  • Lakey R, Easton P, Al-Hinai H (1995) Eastern Batinah resource assessment numerical modeling report. Minist of Water Resour Muscat, Oman

  • Li X, Liu JP, Saito Y, Nguyen VL (2017) Recent evolution of the Mekong Delta and the impacts of dams. Earth Sci Rev 175:1–17. https://doi.org/10.1016/j.earscirev.2017.10.008

    Article  Google Scholar 

  • Liu H, Liu Y, Wang K, Zhao W (2020) Soil conservation efficiency assessment based on land use scenarios in the Nile River Basin. Ecol Indic 119:106864. https://doi.org/10.1016/j.ecolind.2020.106864

    Article  Google Scholar 

  • Lobera G, Batalla RJ, Vericat D, López-Tarazón JA, Tena A (2015) Sediment transport in two Mediterranean regulated rivers. Sci Total Environ 540:101–113. https://doi.org/10.1016/j.scitotenv.2015.08.018

    Article  CAS  Google Scholar 

  • Majoro F, Wali UG, Munyaneza O, Naramabuye FX, Mukamwambali C (2020) On-site and off-site effects of soil erosion: causal analysis and remedial measures in agricultural land-a review. Rwanda J Eng Sci Tech Environ 3

  • Markhi A, Laftouhi N, Grusson Y, Soulaimani A (2019) Assessment of potential soil erosion and sediment yield in the semi-arid N′ fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica 67(1):263–272. https://doi.org/10.1007/s11600-019-00251-z

    Article  Google Scholar 

  • Mengistu F, Assefa E (2019) Farmers’ decision to adopt watershed management practices in Gibe basin, southwest Ethiopia. Int Soil Water Conserv Res 7(4):376–387

    Article  Google Scholar 

  • Merritt DM, Wohl EE (2006) Plant dispersal along rivers fragmented by dams. River Res Applic 22(1):1–26. https://doi.org/10.1002/rra.890

    Article  Google Scholar 

  • Mi J, Li YF, Yang YJ, Peng W, Huang HZ (2014) Thermal cycling life prediction of Sn-3.0 Ag-0.5 Cu solder joint using type-I censored data. Sci World J 31:1–11

    Article  Google Scholar 

  • Ministry of Regional Municipalities & Water Resources (MRMWR) (2012) Dams in Oman. Retrieved from https://www.mrmwr.gov.om/documents/30948/31451/3_1.pdf/3cc54c19-fbed-446e-bb8d-0773ec18eb9c

  • Minitab LLC (2021) Minitab Retrieved from https://www.minitab.com Retrived on 24 Dec 2023

  • Mohammed S, Alsafadi K, Talukdar S, Kiwan S, Hennawi S, Alshihabi O, Harsanyie E (2020) Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sensing Appl: Soc Environ 20:100375

    Google Scholar 

  • Nearing MA, Yin SQ, Borrelli P, Polyakov VO (2017) Rainfall erosivity: an historical review. CATENA 157:357–362

    Article  Google Scholar 

  • Pardoe HS, Cleal CJ, Berry CM, Cascales-Miñana B, Davis BA, Diez JB, Uhl D (2021) Palaeobotanical experiences of plant diversity in deep time How to measure and analyse past plant biodiversity. Palaeogeogr Palaeoclimatol Palaeoecol 580:110618. https://doi.org/10.1016/j.palaeo.2021.110618

    Article  Google Scholar 

  • Perera D, Williams S, Smakhtin V (2022) Present and future losses of storage in large reservoirs due to sedimentation: a country-wise global assessment. Sustainability 15(1):219. https://doi.org/10.3390/su15010219

    Article  Google Scholar 

  • Pijl A, Reuter LE, Quarella E, Vogel TA, Tarolli P (2020) GIS-based soil erosion modelling under various steep-slope vineyard practices. Catena 193:104604. https://doi.org/10.1016/j.catena.2020.104604

    Article  Google Scholar 

  • Piyathilake IDUH, Sumudumali RGI, Udayakumara EPN, Ranaweera LV, Jayawardana JMCK, Gunatilake SK (2021) Modeling predictive assessment of soil erosion related hazards at the Uva province in Sri Lanka. Model Earth Syst Environ 7(3):1947–1962

    Article  Google Scholar 

  • Prama M, Omran A, Schröder D, Abouelmagd A (2020) Vulnerability assessment of flash floods in Wadi Dahab Basin. Egypt Environ Earth Sci 79(5):1–17

    Google Scholar 

  • Rajendran S, Nasir S, Al Jabri K (2020) Mapping and accuracy assessment of siltation of recharge dams using remote sensing technique. Sci Rep 10(1):1–19

    Article  Google Scholar 

  • Rawal D (2021) Biodiversity analysis of chironomids (Diptera: Chironomidae) in Jaisamand Lake (Udaipur, Rajasthan). Int J Entomol Res 6(2):135–139

    Google Scholar 

  • Renard KG (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Government Printing

  • Sallam A, Bader Alharbi A, Usman AR, Hussain Q, Ok YS, Alshayaa M, Al-Wabel M (2018) Environmental consequences of dam construction: a case study from Saudi Arabia. Arab J Geosci 11(3):1–12

    Article  Google Scholar 

  • Sartori M, Philippidis G, Ferrari E, Borrelli P, Lugato E, Montanarella L, Panagos P (2023) A linkage between the biophysical and the economic: assessing the global market impacts of soil erosion. Land Use Policy 86:299–312

    Article  Google Scholar 

  • Schepers L, Brennand P, Kirwan ML, Guntenspergen GR, Temmerman S (2020) Coastal marsh degradation into ponds induces irreversible elevation loss relative to sea level in a microtidal system. Geophys Res Lett 47(18):e2020GL089121. https://doi.org/10.1002/esp.5075

    Article  Google Scholar 

  • Schmidt S, Tresch S, Meusburger K (2019) Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. MethodsX 6:219–229. https://doi.org/10.1016/j.mex.2019.01.004

    Article  Google Scholar 

  • Schmitt RJP, Rubin Z, Kondolf GM (2017) Losing ground-scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta. Geomorphology 294:58–69

    Article  Google Scholar 

  • Sharma A, Tiwari KN, Bhadoria PBS (2011) Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ Monit Assess 173(1):789–801. https://doi.org/10.1007/s10661-010-1423-6

    Article  Google Scholar 

  • Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Spencer W, Anne G, Heather T, Taylor R, Hamel P (2014) InVEST tip user’s guide. The Natural Capital Project. Stanford, USA

  • Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Nelson E, Douglass J (2018). InVEST +VERSION+ User’s Guide. The Natural Capital Project, Stanford University. University of Minnesota, The Nature Conservancy, and World Wildlife Fund

  • Shoman M (2019) Estimation of soil erosion hazard in some wadis of the north western coast Egypt using RUSLE model and GIS. Int J Adv Res 7:290–302. https://doi.org/10.21474/IJAR01/9037

    Article  Google Scholar 

  • Stewart BA (1975) Control of water pollution from cropland (vol. 1). Department of Agriculture, Agricultural Research Service

  • Sulaeman D, Westhoff T (2020) The causes and effects of soil erosion, and how to prevent it. https://www.wri.org/insights/causes-and-effects-soil-erosion-and-how-prevent-it. Accessed on December 21, 2023

  • Uddin K, Murthy MSR, Wahid SM, Matin MA (2016) Estimation of soil erosion dynamics in the Koshi basin using GIS and remote sensing to assess priority areas for conservation. Plos One 11(3):e0150494. https://doi.org/10.1371/journal.pone.0150494

    Article  CAS  Google Scholar 

  • van Treeck R, Geist J, Pander J, Tuhtan J, Wolter C (2022) Impacts and risks of hydropower. In Novel Developments for Sustainable Hydropower (pp. 41–60). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-99138-8_4

  • Vigiak O, Borselli L, Newham LTH, McInnes J, Roberts AM (2012) Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138(1):7–88. https://doi.org/10.1016/j.geomorph.2011.08.026

    Article  Google Scholar 

  • Wang Z, Lechner AM, Baumgartl T (2018) Mapping cumulative impacts of mining on sediment retention ecosystem service in an Australian mining region. Int J Sustain Dev World Ecol 25(1):69–80. https://doi.org/10.1080/13504509.2016.1277564

    Article  Google Scholar 

  • Wischmeier WH, Smith DD, Uhland RE (1958) Evaluation of factors in the soil loss equation. Agric Eng 39(8):458–462

    Google Scholar 

  • Wischmeier WH, Johnson CB, Cross BV (1971) Soil erodibility nomograph for farmland and construction sites. Handbook. 537. US Dept Agr., Washington, D.C

  • World Commission on Dams (2000) Dams and development: a new framework for decision-making: The Report of the World Commission on Dams. Earthscan

  • Young ME, De Bruijn RGM, Al-Ismaily AS (1998) Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding. Hydrogeol J  6(3), 383–393. Retrieved https://link.springer.com/content/pdf/10.1007/s100400050161.pdf

  • Zaigham NA, Mahar GA, Aburizaiza OS, Nayyar ZA (2022) Strategic management of flood water can ensure food security in desertic east-region of Medina. Saudi Arab Arab J Geosci 15(14):1–10

    Google Scholar 

  • Zhang H, Meng Q, You Q, Huang T, Zhang X (2022) Influence of vegetation filter strip on slope runoff, sediment yield and nutrient loss. Appl Sci 12(9):4129. https://doi.org/10.3390/app12094129

    Article  CAS  Google Scholar 

  • Zhao Q, Liu S, Deng L, Dong S, Cong W, Yang Z, Yang J (2012) Landscape change and hydrologic alteration associated with dam construction. Int J Appl Earth Obs Geoinformation 16:17–26. https://doi.org/10.1016/j.jag.2011.11.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Ali AlSubhi for his guidance and support, and Eng. Ismail AlRashdi for helping in identifying the plant names.

Funding

This study was funded by Sultan Qaboos University Internal Grant (IG/AGR/CROP/19/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amna Al Ruheili.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Ruheili, A., Al Ismaily, S., Al Wardy, M. et al. Dam impacts on plant communities based on sediment delivery ratio (InVEST-SDR): Wadi Ma’awil catchment of Oman. Arab J Geosci 17, 154 (2024). https://doi.org/10.1007/s12517-024-11952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-024-11952-1

Keywords

Navigation