Skip to main content
Log in

Variations of b-value and the ω-upper bound magnitude of GIII distribution of the Pamir–Hindu Kush region

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The frequency–magnitude distribution (b-value) and upper bound magnitude to Gumbel’s third asymptotic distribution (ω-value) for the seismicity of the Pamir–Hindu Kush region from March 1949 to December 2018 is analyzed. The seismicity analysis includes an earthquake catalogue of M ≥ 3.0 extracted from National Earthquake Information Center (NEIC), USGS database which displays distribution of the earthquakes (declustered) in the study area. The study area has been divided into sub-zones that include the Hindu Kush, South Pamir, Central Pamir, and North Pamir. The b- and ω-values of the entire region, zones, and cross-sections have been estimated to understand the implications of variations in seismicity among the different parts. Considerable variations in the b- and ω-values are identified with b and ω ranging from 0.99 to 1.47 and 6.20 to 8.27 respectively. According to this study, the seismic zones of Hindu Kush and North Pamir correspond to a “low b-values” and a “very high ω-values” which are associated with the main tectonic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aki K (1965) Maximum lilkelihood estimate of b in the formula logN=a-bM and its confidence limits. Bull Earthq Res Inst 43:237–239

    Google Scholar 

  • Ambraseys N, Bilham R (2012) The Sarez-Pamir earthquake and landslide of 18 February 1911. Seismol Res Lett 83(2):294–314. https://doi.org/10.1785/gssrl.83.2.294

    Article  Google Scholar 

  • Aminov J, Ding L, Mamadjonov Y, Dupont-Nivet G (2017) Pamir Plateau formation and crustal thickening before the India-Asia collision inferred from dating and petrology of the 110-92 Ma Southern Pamir volcanic sequence. Gondwana Res 51:310–326

    Article  Google Scholar 

  • Angiolini L, Zanchi A, Zanchetta S, Nicora A, Vuolo I, Berra F, Henderson C, Malaspina N, Rettori R, Vachard D (2014) From rift to drift in South Pamir (Tajikistan): Permian evolution of a Cimmerian terrane. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2014.08.001

  • Ansari A, Rao KS, Jain AK (2022a) Damage analysis of seismic response of shallow tunnels in Jammu. In: Recent Developments in Sustainable Infrastructure (ICRDSI-2020)-GEO-TRA-ENV-WRM 611-619. Springer, Singapore. https://doi.org/10.1007/978-981-16-7509-6_47

    Chapter  Google Scholar 

  • Ansari A, Rao KS, Jain AK (2022b) Seismic vulnerability of tunnels in Jammu and Kashmir during post-seismic functionality. Geotech Geolog Eng 41(11):1–26

    Google Scholar 

  • Ansari A, Rao KS, Jain AK (2022c) Deep learning model for predicting tunnel damages and track serviceability under seismic environment. Model Earth Syst and Environ 8(4):1–20. https://doi.org/10.1007/s40808-022-01556-7

    Article  Google Scholar 

  • Ansari A, Rao KS, Jain AK (2023a) Seismic response and fragility evaluation of circular tunnels in the Himalayan region: implications for post-seismic performance of transportation infrastructure projects in Jammu and Kashmir. Tunn Undergr Space Technol 137:1–13. https://doi.org/10.1016/j.tust.2023.105118

    Article  Google Scholar 

  • Ansari A, Zaray AH, Rao KS, Jain AK, Hashmat PA, Ikram MK, Wahidi AW (2023b) Reconnaissance surveys after June 2022 Khost earthquake in Afghanistan: implication towards seismic vulnerability assessment for future design. Innov Infrastruct Solut 8(3):1–15. https://doi.org/10.1007/s41062-023-01077-x

    Article  Google Scholar 

  • Ansari A, Zahoor F, Rao KS, Jain AK (2023c) Seismic response and vulnerability evaluation of Jammu Region (Jammu and Kashmir). Indian Geotech J 53(3):509–522. https://doi.org/10.1007/s40098-022-00694-0

    Article  Google Scholar 

  • Bayrak Y, Ozturk S, Cinar H, Koravos GC, Tsapanos TM (2008) Regional variation of the ω - upper bound magnitude of GIII distribution in and around Turkey: tectonic implications for earthquake hazards. Pure Appl Geophys 165:1367–1390

    Article  Google Scholar 

  • Billington S, Isacks BL, Barazangi M (1977) Spatial distribution and focal mechanisms of mantle earthquakes in the Hindu Kush-Pamir region: a contorted Benioff zone. Geology 5:699–704

    Article  Google Scholar 

  • Burtman V, Molnar P (1993) Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geol Soc Am Spec Pap 281:1–76

    Google Scholar 

  • Burton PW (1979) Seismic risk in southern Europe through to India examined using Gumbel’s third distribution of extreme values. Geophys J R Astron Soc 59:249–280

    Article  Google Scholar 

  • Burton PW, Xu Y, Qin C, Tselentis G, Sokos E (2004) A catalogue of seismicity in Greece and the adjacent areas for the twentieth century. Tectonophysics 390(1-4):117–127

    Article  Google Scholar 

  • Chan CH, Wu YM, Tseng TL, Lin TL, Chen CC (2012) Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics 532(535):215–222

    Article  Google Scholar 

  • Chatelain JL, Roecker SW, Hatzfeld D, Molnar P (1980) Microearthquake seismicity and fault plane solutions in the Hindu Kush region and their tectonic implications. J Geophys Res 85:1365–1387

    Article  Google Scholar 

  • Cowgill E (2010) Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. GSA bull 122:145–161

    Article  Google Scholar 

  • Elliott A, Elliott J, Hollingsworth J, Kulikova G, Parsons B, Walker R (2020) Satellite imaging of the 2015 M7.2 earthquake in the Central Pamir, Tajikistan, elucidates a sequence of shallow strike-slip ruptures of the Sarez-Karakul fault. Geophys J Int 221(3):1696–1718

    Article  Google Scholar 

  • Evans SG, Roberts NJ, Ischuk A, Delaney KB, Morozova GS, Tutubalina O (2009) Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Eng Geol 109(3–4):195–212. https://doi.org/10.1016/j.enggeo.2009.08.007

    Article  Google Scholar 

  • Fan G, Ni JF, Wallace TC (1994) Active tectonics of the Pamirs and Karakorum. J. Geophys Res 99:7131–7160

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth and asoociated phenomena, 2nd edn. Princeton Univ. Press, p 310

  • Hanks T (1979) b values and ω−γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. J Geophys Res 84:2235–2242

    Article  Google Scholar 

  • Hayat U, Barkat A, Ali A, Rehman K, Sifat S, Iqbal T (2019) Fractal analysis of shallow and intermediate-depth seismicity of Hindu Kush. Chaos, Solitons & Fractals 128:71–82

    Article  Google Scholar 

  • Ischuk A, Bendick R, Rybin A, Molnar P, Khan FS, Kuzikov S et al (2013) Kinematics of the Pamir and Hindu Kush regions from GPS geodesy. J Geophys Res : Solid Earth 118:2408–2416. https://doi.org/10.1002/jgrb.50185

    Article  Google Scholar 

  • Ishimoto M, Iida K (1939) Observations sur les seisms enregistre par le microseismograph construit demiement. Bull Earthq Res Inst Tokyo Univ 17:443–478

    Google Scholar 

  • Kufner SK et al (2016) Deep India meets deep Asia: lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth Planet Sci Lett 435:171–184

    Article  Google Scholar 

  • Kulikova G, Schurr B, Krüger F, Brzoska E, Heimann S (2015) Source parameters of the Sarez-Pamir earthquake of 1911 February 18. Geophys J Int 205(2):1086–1098. https://doi.org/10.1093/gji/ggw069

    Article  Google Scholar 

  • Legrand D, Tassara A, Morales D (2012) Megathrust asperities and clusters of slab dehydration identified by spatiotemporal characterization of seismicity below the Andean margin. Geophys J Int 191:923–931

    Google Scholar 

  • Lehmann L (1964) The Hindu Kush earthquake of March 4, 1949 as recorded in Europe. Bull Seismol Soc Am 54(6A):1915–1925

    Article  Google Scholar 

  • Makropoulos KC, Burton PW (1986) Hazan: a FORTRAN program to evaluate seismic-hazard parameters using Gumbel’s theory of extreme value statistics. Comput Geosci 12:29–46

    Article  Google Scholar 

  • Metzger S, Schurr B, Ratschbacher L, Sudhaus H, Kufner SK, Schöne T, Zhang Y, Perry M, Bendick R (2017) The 2015 Mw 7.2 Sarez Strike-Slip Earthquake in the Pamir Interior: response to the underthrusting of India’s Western Promontory. Tectonics 36:2407–2421. https://doi.org/10.1002/2017tc004581

    Article  Google Scholar 

  • Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to the earthquake phenomena. Bull Earthq Res Institute, Univ Tokyo 40:125–173

    Google Scholar 

  • Mohadjer S, Ehlers TA, Bendick R, Stübner K, Strube T (2016) A Quaternary fault database for central Asia. Nat Hazards Earth Syst Sci 16:529–542

    Article  Google Scholar 

  • Mohammadi H, Bayrak Y (2016) An evaluation of earthquake hazard parameters in the Iranian plateau based on the Gumbel III distribution. J Seismol 20:615–628

    Article  Google Scholar 

  • Nanjo KZ, Yoshida AA (2018) b map implying the first eastern rupture of the Nankai Trough earthquakes. Nat Commun. https://doi.org/10.1038/s41467-018-03514-3

  • Negredo AM, Replumaz A, Villaseñor A, Guillot S (2007) Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth Planet Sci Lett 259(1):212–225

    Article  Google Scholar 

  • Nowroozi AA (1971) Seismo-tectonics of the Persian plateau, eastern Turkey, Caucasus, and Hindukush regions. Bull Seismol Soc Am 61(2):317–341

    Google Scholar 

  • Nuannin P (2006) The potential of b-value variations as earthquake precursors for small and large events; digital comprehensive summaries of Uppsala Dissertations from the Faculty of Science and Technology.

  • Pavlis GL, Das S (2000) The Pamir-Hindu Kush seismic zone as a strain marker for flow in the upper mantle. Tectonics 19:103–115

    Article  Google Scholar 

  • Pegler G, Das S (1998) An enhanced image of the Pamir-Hindu Kush seismic zone from relocated earthquake hypocentres. Geophys J Int 134:573–595

    Article  Google Scholar 

  • Prieto GA, Beroza GC, Barrett SA, López GA, Florez M (2012) Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics 570:42–56

    Article  Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity. J Geophys Res 90:5479–5495

    Article  Google Scholar 

  • Rehman K, Ali W, Ali A, Ali A, Barkat A (2017) Shallow and intermediate depth earthquakes in the Hindu Kush region across the Afghan-Pakistan border. J Asian Earth Sci 148:241–253

    Article  Google Scholar 

  • Rehman K, Burton PWG (2020) Seismicity and seismic hazard parameters in and around Pakistan. J Seismol 24:635–653

    Article  Google Scholar 

  • Ritsema AR (1966) The fault-plane solutions of earthquakes of the Hindu Kush centre. Tectonophysics 3(2):147–163

    Article  Google Scholar 

  • Roecker SW (1981) Seismicity and tectonics of the Pamir-Hindu Kush Region of Central Asia (Ph.D. Thesis). Massachusetts Institute of Technology, Cambridge, p 294

    Google Scholar 

  • Sangha S, Peltzer G, Zhang A, Meng L, Lian C, Lundgren P, Fielding E (2017) Fault geometry of 2015, Mw7.2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data. Earth Planet Sci Lett 462:132–141. https://doi.org/10.1016/j.epsl.2017.01.018

    Article  Google Scholar 

  • Schurr B, Ratschbacher L, Sippel J, Gloaguen R, Yuan X, Mechie J (2014) Seismotectonics of the Pamir. Tectonics 33(8):1501–1518

    Article  Google Scholar 

  • Searle M, Hacker BR, Bilham R (2001) The Hindukush seismic zone as a paradigm for the creation of ultrahigh pressure diamond and coesite bearing continental rocks. J Geol 109(2):143–153

    Article  Google Scholar 

  • Sippl C, Ratschbacher L, Schurr B, Krumbiegel C, Rui H, Pingren L, Abdybachaev U (2014) The 2008 Nura earthquake sequence at the Pamir-Tian Shan collision zone, southern Kyrgyzstan. Tectonics 33(12):2382–2399

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake size distribution across different stress regimes. Nature 437:539–542

    Article  Google Scholar 

  • Singh C, Singh S (2015) Imaging b-value variation beneath the Pamir-Hindu Kush Region. Bull Seismol Soc Am 105(2A):808–815

    Article  Google Scholar 

  • Sobel ER, Chen J, Schoenbohm LM, Thiede R, Stockli DF, Sudo M, Strecker MR (2013) Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen. Earth Planet Sci Lett 363:204–218

    Article  Google Scholar 

  • Tsapanos TM, Burton PW (1991) Seismic hazard evaluation for specific seismic regions of the world. Tectonophysics 194:153–169

    Article  Google Scholar 

  • Tsapanos TM, Yadav RBS, Olasoglou EM, Singh M (2016) Assessment of the relative largest earthquake hazard level in the NW Himalaya and its adjacent region. Acta Geophys 64(2):362–378

    Article  Google Scholar 

  • Tsapanos TM (1997) Regional variation of the values in the circum-Pacific belt. Pure Appl Geophys 150(1):113–120

    Article  Google Scholar 

  • Urbancic TI, Trifu CI, Long JM, Young RP (1992) Space-time correlations of b values with stress release. Pure Appl Geophys 139:449–462

    Article  Google Scholar 

  • USGS (2015) US Geol Surv M 7.2—104 km W of Murghob, Tajikistan (Tech. Rep.). USGS, Menlo Park, CA

    Google Scholar 

  • USGS (2016) US Geol Surv Earthquake Hazard Program. Available from USGS official website, http://earthquake.usgs.gov/earthquake/eventpage/us10003re5#executive

    Google Scholar 

  • Wiemer SA (2001) Software package to analyze seismicity: ZMAP. Seism Res Lett 72:373–382

    Article  Google Scholar 

  • Wyss M (1973) Towards a physical understanding of earthquake frequency distribution. Geophys J R Astron Soc 31:341–359

    Article  Google Scholar 

  • Yadav RBS, Bayrak Y, Tripathi JN, Chopra S, Singh AP, Bayrak E (2012a) Regional variation of the ω-upper bound magnitude of GIII distribution in Hindukush-Pamir Himalaya and the adjacent regions: a perspective on earthquake hazard. Tectonophysics 544–545:1–12

    Article  Google Scholar 

  • Yadav RBS, Bayrak Y, Tripathi JN, Chopra S, Singh AP, Bayrak E (2012b) A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions. Pure Appl Geophys 169(9):1619–1639

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zarifi Z, Havskov J (2003) Characteristics of dense nests of deep and intermediate depth seismicity. Adv Geophys 46:237–278

    Article  Google Scholar 

  • Zubovich AV, Wang X-Q, Scherba YG, Schelochkov GG, Reilinger R, Reigber C et al (2010) GPS velocity field of the Tien Shan and surrounding regions. Tectonics 29:TC6014. https://doi.org/10.1029/2010TC002772

    Article  Google Scholar 

Download references

Acknowledgements

We thank GIS and Space Applications in Geosciences (G-SAG) Lab, National Center of GIS and Space Applications, Islamabad, Pakistan, for the their support in this research. We acknowledge the research facilities provided by the National Centre of Excellence in Geology, University of Peshawar, Pakistan. We are thankful to the anonymous reviewers for their valuable and helpful comments leading to an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaista Rehman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Longjun Dong

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, K., Ali, W., Shafique, M. et al. Variations of b-value and the ω-upper bound magnitude of GIII distribution of the Pamir–Hindu Kush region. Arab J Geosci 16, 615 (2023). https://doi.org/10.1007/s12517-023-11707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11707-4

Keywords

Navigation