Skip to main content

Advertisement

Log in

Segmentation of digital rock images using texture analysis and deep network

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Image segmentation is an important part of the standard digital rock physics (DRP) workflows. In this paper, we present ground-truthing of digital rock images using texture analysis. We propose a deep learning–based approach for automated segmentation which is validated using the extracted ground-truth. To generate the ground-truth, we utilize the a priori knowledge of minerals and pores. We perform texture based iterative intensity thresholding to calculate the porosity and mineral composition. The ground-truth is generated for the berea sandstone image dataset and the grosmont carbonate image dataset. Results obtained from the experiments conform to the porosity and composition ranges provided in the literature. For the purpose of automated segmentation, we use a SegNet deep network which performs pixel-wise segmentation of digital rock images into pores and minerals. We train and test the SegNet using 1024 images of berea sandstone dataset ground-truthed using iterative intensity thresholding. We utilize a split of 90% and 10% for training and testing, respectively. Experimental outcomes show that the SegNet-based segmentation results for the minerals such as clay, ankerite, and zircon are better than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The image data used in the experiments is available at: https://github.com/fkrzikalla/drp-benchmarks

References

  • Abdollahi A, Pradhan B, Gite S, Alamri A (2020) Building footprint extraction from high resolution aerial images using generative adversarial network (gan) architecture. IEEE Access 8:209517–209527

    Article  Google Scholar 

  • Andra H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, Keehm Y, Krzikalla F, Lee M, Madonna C et al (2013) Digital rock physics benchmarks—part i: imaging and segmentation. Comput Geosci 50:25–32

    Article  Google Scholar 

  • Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE T Pattern Anal 39:2481–2495

    Article  Google Scholar 

  • Chatterjee S (2013) Vision-based rock-type classification of limestone using multi-class support vector machine. Apin 39:14–27

    Google Scholar 

  • Chen X, Zhou Y (2017) Applications of digital core analysis and hydraulic flow units in petrophysical characterization. Adv Geo-Energy Res 1:18–30

    Article  Google Scholar 

  • Dvorkin J, Tono H, Carl S, Malone D (2016) Method and system for integrating logging tool data and digital rock physics to estimate rock formation properties. US Patent 9,507,047

  • Gite S, Agrawal H (2016) On context awareness for multisensor data fusion in iot. In: ICCCT. Springer, pp 85–93

  • Gite S, Agrawal H (2019) Early prediction of driver’s action using deep neural networks. IJIRR 9:11–27

    Google Scholar 

  • Han Y, Hu D, Matzar L (2014) Numerical computation of elastic properties for porous rocks based on ct scanned images using direct mapping method. JJ Pet Sci Eng 122:346–353

    Article  Google Scholar 

  • Huang C, Zhang X, Liu S, Li N, Kang J, Xiong G (2021) Construction of pore structure and lithology of digital rock physics based on laboratory experiments. J Pet Explor Prod Technol 11:2113–2125

    Article  Google Scholar 

  • Islam A, Chevalier S, Sassi M (2018) Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography. Comput Geosci 113:14–22

    Article  Google Scholar 

  • Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z, Qu R (2019) A survey of deep learning-based object detection. IEEE access 7:128837–128868

    Article  Google Scholar 

  • Jones B, Feng Y (2016) Effect of image scaling and segmentation in digital rock characterisation. CPM 3:201–213

    Google Scholar 

  • Kalam MZ (2012) Digital rock physics for fast and accurate special core analysis in carbonates. New Technol Oil Gas Ind 2012:201–226

    Google Scholar 

  • Karimpouli S, Tahmasebi P (2016) Conditional reconstruction: an alternative strategy in digital rock physicsan alternative strategy in drp. Geophysics 81:D465–D477

    Article  Google Scholar 

  • Karimpouli S, Tahmasebi P (2019a) Image-based velocity estimation of rock using convolutional neural networks. Neural Netw 111:89–97

    Article  Google Scholar 

  • Karimpouli S, Tahmasebi P (2019b) Segmentation of digital rock images using deep convolutional autoencoder networks. Comput Geosci 126:142–150

    Article  Google Scholar 

  • Khade S, Gite S, Pradhan B (2022) Iris liveness detection using multiple deep convolution networks. Big Data Cogn Comput 6:67

    Article  Google Scholar 

  • Lin W, Li X, Yang Z, Lin L, Xiong S, Wang Z, Wang X, Xiao Q (2018) A new improved threshold segmentation method for scanning images of reservoir rocks considering pore fractal characteristics. Fractals 26:1840003

    Article  Google Scholar 

  • Madonna C, Almqvist BS, Saenger EH (2012) Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-ct imaging. Geophys J Int 189:1475–1482

    Article  Google Scholar 

  • Mekruksavanich S, Jitpattanakul A (2021) Biometric user identification based on human activity recognition using wearable sensors: an experiment using deep learning models. Electronics 10:308

    Article  Google Scholar 

  • Nafea O, Abdul W, Muhammad G, Alsulaiman M (2021) Sensor-based human activity recognition with spatio- temporal deep learning. Sensors 21:2141

    Article  Google Scholar 

  • Pyrcz M, Deutsch C (2014) Geostatistical reservoir modeling. Oxford University Press

  • Quan Y, Shao Y, Teng H, Xu Y, Ji H (2021) Image denoising using complex-valued deep cnn. Pattern Recogn 111:107639

    Article  Google Scholar 

  • Ramanujam E, Perumal T, Padmavathi S (2021) Human activity recognition with smartphone and wearable sensors using deep learning techniques: a review. IEEE Sens J 21:13029–13040

    Article  Google Scholar 

  • Samet R, Amrahov SE, Ziroglu AH (2012) Fuzzy rule-based image segmentation technique for rock thin section images. In IPTA (pp. 402–406). https://doi.org/10.1109/IPTA.2012.6469555.

  • Saxena N, Hofmann R, Alpak FO, Dietderich J, Hunter S, Day-Stirrat RJ (2017) Effect of image segmentation & voxel size on micro-ct computed effective transport & elastic properties. Mar Pet Geol 86:972–990

    Article  Google Scholar 

  • Shang R, He J, Wang J, Xu K, Jiao L, Stolkin R (2020) Dense connection and depthwise separable convolution based cnn for polarimetric sar image classification. KnowL-Based Syst 194:105542

    Article  Google Scholar 

  • Tavanaei A, Salehi S (2015) Pore, throat, and grain detection for rock sem images using digitalwatershed image segmentation algorithm. J Porous Media 18(5):507–518

  • Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) Cnn-rnn: a unified framework for multi-label image classification. In: CVPR, pp 2285–2294

  • Wang G, Zuluaga MA, Li W, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S et al (2018) Deepigeos: a deep interactive geodesic framework for medical image segmentation. IEEE T Pattern Anal 41:1559–1572

    Article  Google Scholar 

  • Wu X, Sahoo D, Hoi SC (2020) Recent advances in deep learning for object detection. Neurocomputing 396:39–64

    Article  Google Scholar 

  • Zhao Z-Q, Zheng P, Xu S-T, Wu X (2019) Object detection with deep learning: a review. IEEE T Neur Net Lear 30:3212–3232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tehreem Qasim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, S., Qasim, T., Bhatti, N. et al. Segmentation of digital rock images using texture analysis and deep network. Arab J Geosci 16, 436 (2023). https://doi.org/10.1007/s12517-023-11549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11549-0

Keywords

Navigation