Skip to main content
Log in

Salinization risk assessment of irrigated soils in the Souf Valley (South-East Algeria) using chemical analysis, multivariate statistics, and GIS

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In arid regions, such as the Souf Valley in southeastern Algeria, agriculture is the main contributor to economic development. Groundwater irrigation is essential for agriculture, and if excessive or poorly planned, is a major cause of soil salinization. Despite the importance of this, soil salinization risk and groundwater quality here are little known. Therefore, in this study, we evaluated 41 wells in the Souf Valley region to investigate the quality and suitability of the groundwater for irrigation and associated soil salinization risks. Specifically, we performed water sample analysis across these wells, measuring the levels of physicochemical parameters (pH and electrical conductivity) and the concentrations of Ca2+, Mg2+, Na+, K+, SO42−, Cl, HCO3, and NO3. In addition, geographic Information System (GIS) was used to assess and map both water quality and arable land loss due to salinization. The results of this study revealed the predominance of chloride, magnesium sulfate, and chloride-calcium facies. The groundwater nitrate concentrations reached 97.47 mg. L−1 and 92.5 mg. L−1 on the agricultural perimeters of Hassani Abdelkrim and Ourmes, respectively. This water is non-potable as it is too saline, making it unsuitable for irrigation purposes. Our study shows that groundwater pollution and soil salinization in the Souf Valley greatly threaten the future sustainability of agriculture here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbasnia A, Yousefi N, Mahvi AH, Nabizadeh R, Radfard M, Yousefi M, Alimohammadi M (2019) Evaluation of ground- water quality using water quality index and its suitability for assessing water for drinking and irrigation purposes; case study of Sistan and Baluchistan province (Iran). Hum Ecol Risk Assess Int J 25(4):988–1005. https://doi.org/10.1080/10807039.2018.1458596

    Article  Google Scholar 

  • Abdennour MA, Douaoui A, Piccini C, Pulido M, Bennacer A, Bradaï A, Yahiaoui I (2020) Predictive mapping of soil electrical conductivity as a Proxy of soil salinity in south-east of Algeria. Environ Sustain Ind 8:100087

    Google Scholar 

  • Abdennour MA, Douaoui A, Barrena J (2021) Geochemical characterization of the salinity of irrigated soils in arid regions (Biskra, SE Algeria). Acta Geochim 40:234–250. https://doi.org/10.1007/s11631-020-00426-2

    Article  Google Scholar 

  • Abdennour MA, Douaoui A, Bradai A, Bennacer A, Fernández MP (2019) Application of kriging techniques for assessing the salinity of irrigated soils: the case of El Ghrous perimeter, Biskra, Algeria. Spanish J Soil Sci 9(2).https://doi.org/10.3232/SJSS.2019.V9.N2.04

  • Ahoussi EK, Soro N, Kouassi AM, Soro G, Koffi YB, Zade SP (2010) Application des méthodes d’analyses statistiques multivariées à l’étude de l’origine des métaux lourds (Cu2+, Mn2+, Zn2+ et Pb2+) dans les eaux des nappes phréatiques de la ville d’Abidjan. Int J Biol Chem Sci 4(5):1753–1765. https://doi.org/10.4314/ijbcs.v4i5.65537

    Article  Google Scholar 

  • Arslan H (2012) Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra Plain, Turkey. Agric Water Manag 113:57–63. https://doi.org/10.1016/j.agwat.2012.06.015

    Article  Google Scholar 

  • Arslan H (2017) Determination of temporal and spatial variability of groundwater irrigation quality using geostatistical techniques on the coastal aquifer of Çars ̧amba Plain, Turkey, from 1990 to 2012. Environ Earth Sci 76(1):38. https://doi.org/10.1007/s12665-016-6375-x

    Article  Google Scholar 

  • Ballais JL, Balland V, Benazzouz M, Coque R (1985) Recherches préliminaires sur l'évolution quaternaire du Bas-Sahara algérien

  • Ballais JL, Côte M, Bensaad A (2009) L'influence de la géomorphologie sur le comportement de la nappe phréatique du Souf (Doctoral dissertation,. CEGA-UMR ESPACE CNRS), p 16

  • Battaillon C (1955) Le Souf; étude de géographie humaine. Institut de recherches sahariennes, Alger. Mémoire N 2:140

    Google Scholar 

  • Berkal I (2016) Dynamique spatiotemporelle de la salinité de sols sableux irrigués en milieu aride. Application à une palmeraie de la cuvette de Ouargla en Algérie. (Doctoral dissertation, ENSA)

  • Bessaim MM, Missoum H, Bendani K, Laredj N (2019) Laboratory investigation on solutes removal from artificial amended saline soil during the electrochemical treatment. Int J Environ Sci Technol 16(7):3061–3070

    Article  Google Scholar 

  • Bhunia GS, Keshavarzi A, Shit PK, Omran ESE, Bagherzadeh A (2018) Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Appl Water Sci 8(6):1–16

    Article  Google Scholar 

  • Boufekane A, Saighi O (2019) Assessing groundwater quality for irrigation using geostatistical method –Case of wadi Nil Plain (North-East Algeria). Groundw Sustain Dev 8:179–186. https://doi.org/10.1016/j.gsd.2018.11.003

    Article  Google Scholar 

  • Bouselsal B, Kherici N (2014) Effets de la remontée des eaux de la nappe phréatique sur l’homme et l’environnement: cas de la région d’El-Oued (SE Algérie). Afrique Science: Revue Internationale Des Sciences Et Technologie 10(3)

  • Boutelli MH, Seyd AH (2014) Etude de la Minéralisation et de la Granulométrie des Sols de la Sebkha de Ouargla. J Adv Res Sci Technol

  • Bradai A, Yahiaoui I, Douaoui A, Abdennour MA, Gulakhmadov A, Chen X (2022) Combined Modeling of Multivariate Analysis and Geostatistics in Assessing Groundwater Irrigation Sustenance in the Middle Cheliff Plain (North Africa). Water 14(6):924

    Article  Google Scholar 

  • Cheverry CL, Robert M (1998) La dégradation des sols irrigués et de la ressource en eau. Une menace pour l’avenir de l’agriculture et pour l’environnement des pays au sud de la Méditérranée? Étude et Gestion des Sols 5(4):217–226

    Google Scholar 

  • Cheverry C (1974) Contribution à l’étude pédologique des polders du lac Tchad. Dynamique des sels en milieu continental subaride. Dans des sédiments argileux et organiques. Th. Docteur d'Etat. Univers' ité L. Pasteur, Strasbourg, 175

  • Côte M (1998) Des oasis malades de trop d’eau? Science et changements planétaires/Sécheresse 9(2):123–130

    Google Scholar 

  • Das S, Nag SK (2017) Application of multivariate statistical analysis concepts for assessment of hydrogeochemistry of groundwater a study in Suri I and II blocks of Birbhum. District, West Bengal, India. Appl Water Sci 7(2):873–888

    Article  Google Scholar 

  • Diallo MD, Ndiaye O, Saleh MM, Tine A, Diop A, Guisse A (2015) Étude comparative de la salinité de l’eau et des sols dans la zone nord des Niayes (Sénégal). Afr Crop Sci J 23(2):101–111

    Google Scholar 

  • Drever JI (1997) The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd edn. Prentice Hall, New York, NY, USA

    Google Scholar 

  • Ferchichi H, Hamouda MFB, Farhat B, Ben MA (2018) Assessment of groundwater salinity using GIS and multivariate statistics in a coastal Mediterranean aquifer. Int J Environ Sci Technol 15(11):2473–2492. https://doi.org/10.1007/s13762-018-1767-y

    Article  Google Scholar 

  • Gaucher G, Burdin S (1974) Géologie, géomorphologie et hydrogéologie des terrains salés. PUF Paris, p 231

  • Goovaerts P (1997) Kriging vs stochastic simulation for risk analysis in soil contamination. In geoENV I—Geostatistics for Environmental Applications. Springer, Dordrecht, pp 247–258

    Google Scholar 

  • Gouaidia L, Guefaifia O, Boudoukha A, Hemila ML, Martin C (2013) Assessment of the groundwater salinity used for irrigation and risks of soil degradation: Example of the plain of Meskiana, Northeastern Algeria. Géo-Eco-Trop 37(1):81–92

    Google Scholar 

  • Grünberger O (2015) Dynamiques salines des sols des milieux arides et semi-arides. Université de Montpellier, Sciences de la Terre 2015

  • Guo X, Zuo R, Shan D, Cao Y, Wang J, Teng Y, Zheng B (2017) Source apportionment of pollution in groundwater source area using factor analysis and positive matrix factorization methods. Hum Ecol Risk Assess 23(6):1417–1436. https://doi.org/10.1080/10807039.2017.1322894

    Article  Google Scholar 

  • HPO/BG (2002) Etude d’assainissement des eaux résiduaires, pluviales et d’irrigation. Mesures complémentaires de lutte contre la remontée de la nappe phréatique. Géomorphologie de la vallée du Souf. Influence sur le comportement de la nappe phréatique. Ministère des ressources en eaux. Office National d’Assainissement ‘ONA’. Bureau d’Etudes Algérien Hydro Projet Ouest et Bureau d’Etudes Suisse ‘Bernard et Gardel’ Ingénieur Conseils. Rapport, p 10

  • Khadraoui A (2007) Gestion des ressources en eau souterraines au Sahara algérien. ABH Sahara p. 53

  • Khadraoui A (2008) Gestion intégrée des ressources en eau au Sahara (cas de la vallée du Souf). Colloque national : Les premières journées d’étude sur « la remontée des eaux de la nappe phréatique dans la région d’El Oued ». Présentation PowerPoint, El Oued, 20–21Avril 2008 p. 20

  • Khadraoui A (2010) Sol et hydraulique agricole dans les oasis algériennes. Caractérisation- contraintes et prospections d’aménagement. OPU: p. 311

  • Khadraoui A (2011) Eau et impact environnemental dans le Sahara Algérien. Définition et perspectives de développement. OPU: p. 303

  • Khezzani B, Bouchemal S (2018) Development and conservation of water resources for agriculture in an arid environment: a case study of the Souf oasis (Algerian Sahara). Ann Arid Zone 57:1–11

    Google Scholar 

  • Legros JP (2009) La salinisation des terres dans le monde. In: Proc. Academie des Sciences et Lettres de Montpellier Conf n 4069:257−269. https://www.acsciences-lettres-montpellier.fr/academie_edition/fichiers_conf/LEGROS2009.pdf 

  • Louati D, Majdoub R, Abida H (2013) Dégradation du sol au niveau d’un périmètre irrigue de la région de Sidi-Alouane (gouvernorat de Mahdia). In International Conference on Natural Hazards and Geomatics, ICNHG 2013:287–292

    Google Scholar 

  • Maas EV, Homan GB (1976) Tolérance des cultures au sel. Riverside, USA

  • Majdoub R, Hachicha M, El Amri A, Melki M (2012) Etude de la dynamique de l’eau et du transfert des sels dans un sol sablo-limoneux du Sahel Tunisien. Eur J Sci Res 80:499–507

    Google Scholar 

  • Mancer H, Bettiche F, Dekki N, Rechachi MZ (2020) Influence de la salinité des eaux d’irrigation sur la minéralisation du carbone organique dans le sol. Journal Algérien Des Régions Arides 14(1):48–55

    Google Scholar 

  • Masmoudi A (2012) Problèmes de la salinité liés à l’irrigation dans la région Saharienne: Cas des Oasis des Ziban. In: Doctoral dissertation. Université Mohamed, Khider–Biskra. https://thesis.univ-biskra.dz/4416/1/Masmoudi%20Ali.pdf

  • Moulla AS, Guendouz A (2003) Etude des ressources en eau souterraines en zones arides (Sahara algérien) par les méthodes isotopiques. Hydrology of the Mediterranean and Semiarid Region. In: Proceedings of an international symposium held at Montpellier. IAHS Publ, No. 278. pp 35–42. https://www.researchgate.net/profile/Benoit-Dewandel/publication/234013295_Importance_of_irrigation_return_flow_on_the_groundwater_budget_of_a_rural_basin_in_India/links/0deec530c955c37f6d000000/Importance-of-irrigationreturn-flow-on-the-groundwater-budget-of-a-rural-basin-in-India.pdf#page=49

  • Moussa AB, Mzali H, Elmejri H, Salem SBH (2019) Apport des outils hydrogéochimiques à l’évaluation de la qualité et l’aptitude des eaux souterraines à l’irrigation: cas de la nappe phréatique de la basse vallée de Medjerda, Tunisie Nord-Orientale. La Houille Blanche 5–6:35–44

    Article  Google Scholar 

  • Murray RS, Grant CD (2007) The impact of irrigation on soil structure. Land and Water Australia:1–31. https://library.dbca.wa.gov.au/static/FullTextFiles/070521.pdf

  • Ncibi K, Gaaloul N, Gasmi A (2016) Contribution of the multivariate analysis and the GIS for Hydrochemical characterization of phreatic aquifer to the plain of Sidi Bouzid (Central Tunisia). Int J Innov Appl Stud 15(3):667

    Google Scholar 

  • Nelson JD, Ward RC (1981) Statistical considerations and sampling techniques for ground-water quality monitoring. Groundwater 19(6):617–626. https://doi.org/10.1111/j.1745-6584.1981.tb03516

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans Am Geophys Union 25(6):914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Ramesh Kumar A, Riyazuddin P (2008) Application of chemometric techniques in the assessment of groundwater pollution in a suburban area of Chennai city, India. Curr Sci 94(8):235–242

    Google Scholar 

  • Rechachi MZ (2017) Impact de la qualité des eaux d’irrigation sur la salinisation des sols en régions arides et semi arides: cas de la région du Ziban. Doctoral dissertation, Université Mohamed Khider-Biskra. https://thesis.univ-biskra.dz/2892/1/Th%C3%A8se_107_2017.pdf

  • Rouabhia AEK, Djabri L (2010) Irrigation and the risk of saline pollution. Example of groundwater from the Miocene aquifer of the El Ma El Abiod plain. LARHYSS Journal P-ISSN 1112-3680/E-ISSN 2521-9782 (8). https://larhyss.net/ojs/index.php/larhyss/article/viewFile/101/95

  • Rouabhia AEK (2010) L’irrigation et le risque de pollution saline. Exemple des eaux souterraines de l’aquifère miocène de la plaine d’el Ma El Abiod. Larhyss Journal, ISSN 1112-3680 : n° 08, Juin 2010, pp. 55-67

  • Routroy S, Harichandran R, Mohanty JK, Panda CR (2013) A statistical appraisal to hydrogeochemistry of fluoride contaminated groundwater in Nayagarh District, Odisha. J Geol Soc India 81:350–360. https://doi.org/10.1007/s12594-013-0045-3

    Article  Google Scholar 

  • Rowland HA, Omoregie EO, Millot R, Jimenez C, Mertens J, Baciu C, Berg M (2011) Geochemistry and arsenic behavior in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl Geochem 26(1):1–17

    Article  Google Scholar 

  • Sansoulet J (2007) Transferts d'eau et des ions potassium et nitrate dans un sol à capacité d'échange anionique sous un couvert redistributeur de la pluie: étude expérimentale et modélisation dans une bananeraie fertilisée sur un andosol (Doctoral dissertation, INA-PG). https://agritrop.cirad.fr/544619/1/document_544619.pdf

  • Scheidleder A (1999) Groundwater quality and quantity in Europe. Office for Official Publications of the European Communities. https://ketlib.lib.unipi.gr/xmlui/bitstream/handle/ket/1060/Environmental%20assessment%20report%20No%203.pdf?sequence=2

  • Schoeller H (1934) Les échanges de base dans les eaux souterraines; trois exemples en Tunisie. Bull Soc Géol France 5(4):389–420

    Google Scholar 

  • Sefiani S, El Mandour A, Laftouhi N, Khalil N, Chehbouni A, Jarlan L, Hanich L (2019) Evaluation of groundwater quality and agricultural use under a semi-arid environment: case of agafay, western haouz, morocco. Irrig. and Drain. John Wiley and Sons, Ltd. 19 p. Published online in Wiley Online Library (wileyonlinelibrary.com) https://doi.org/10.1002/ird.2363

  • Senoussi A, Bissati S, Leghrissi I (2012) Le ghout dans le Souf : l’agonie d’un système ingénieux. Revue des Bio Ressources 2(1):65–80. https://dspace.univouargla.dz/jspui/bitstream/123456789/6724/1/B020108.pdf

  • Servant J (1975) Contribution à l’étude pédologique des terrains halomorphes. L’exemple des sols salés du Sud et du Sud-Ouest de la France Tome 1. ENSA Montpellier, p 194. HESEDOCT. SCI. NAT.; UNIV. SCI. TECH. LANGUEDOC. 2 VOL, 1975, P. 1 A 202. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7520119485

  • Tabet D (1999) Intérêt d'une approche spatiale pour le suivi de la salinité des sols dans les systèmes irrigués: cas de la subdivision de Chistian dans le Punjab, Pakistan. Doctoral dissertation, Doctorat Sciences de l'Eau, ENGREF Montpellier. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=202412

  • Tiwari AK, Ghione R, De Maio M, Lavy M (2017) Evaluation of hydrogeochemical processes and groundwater quality for suitability of drinking and irrigation purposes: a case study in the Aosta Valley region, Italy. Arab J Geosci 10(12):264. https://doi.org/10.1007/s12517-017-3031-z

    Article  Google Scholar 

  • Tlili-zrelli B, Gueddari M, Bouhlila R (2018) Spatial and Temporal Variations of Water Quality of Mateur Aquifer (Nord-Est de la Tunisie): Aptitude à l’irrigation et à la consommation. J Chem 2018:2408632. https://doi.org/10.1155/2018/2408632

    Article  Google Scholar 

  • Tokatlı C, Çicek A, Köse E (2013) Groundwater quality of Türkmen Mountain (Turkey). Pol J Environ Stud 22(4):1197

    Google Scholar 

  • UNESCO (1972) Projet REG. Algérie. Tunisie (ERESS). Etude des ressources en eaux du Sahara Septentrional. Rapport sur les résultats du projet. Conclusion et recommandations. p. 116

  • Van Beek CGEM, Van Breemen N (1973) The alkalinity of alkali soils. J Soil Sci 24(1):129–136

    Article  Google Scholar 

  • WHO, World Health Organization (2008) Progress on drinking-water and sanitation. World Health Organization. https://www.cabdirect.org/cabdirect/abstract/20093082186

  • Wilcox LV (1955) Classification and Use of the Irrigation Waters: Circular No. 969; U.S. Department of Agriculture, Washington, p 19

  • Wu J, Wang L, Wang S, Tian R, Xue C, Feng W, Li Y (2017) Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China. Environ Earth Sc 76(13):460. https://doi.org/10.1007/s12665-017-6787-2

    Article  Google Scholar 

  • Yahiaoui I, Bradaï A, Douaoui A, Abdennour MA (2021) Performance of random forest and buffer analysis of Sentinel-2 data for modelling soil salinity in the Lower-Cheliff plain (Algeria). Int J Remote Sens 42(1):148–171

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the staff of the ADE (Algérienne des eaux ) laboratory in El Oued for hydrogeochemical analysis. Our thanks are also addressed to the anonymous reviewers for their relevant comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chahira Dounia Amel TIGRINE.

Ethics declarations

Conflict of interest

On behalf of the authors of this manuscript, whose names follow, I herby certify that we have no affiliations with or involvement in any organization or entity with any financial interest, and we have no actual or potential competing financial interests (such as personal or professional relationships, affiliations, knowledge or beliefs) and that the authors’ freedom to design, conduct, interpret, and publish research is not compromised by any controlling sponsor as a condition of review and publication.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TIGRINE, C.D.A., BOUTIBA, M. Salinization risk assessment of irrigated soils in the Souf Valley (South-East Algeria) using chemical analysis, multivariate statistics, and GIS. Arab J Geosci 16, 438 (2023). https://doi.org/10.1007/s12517-023-11548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11548-1

Keywords

Navigation