Skip to main content
Log in

Rates of sea-level rise from tide gauge measurements and satellite global positioning system along the Atlantic Coast of Africa

  • Technical Note
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This work aims to study the tide gauges of the west coast of Africa, from Gibraltar to the Cape of Good Hope. The relative rate of rise (RoR) of the sea levels is computed in every tide gauge satisfying minimum length and quality requirements. This information is supplemented by the satellite global positioning system (GPS) measurement of the subsidence of the land nearby the tide gauge to compute the subsidence rate. On average, the relative sea levels are rising along the west coast of Africa at a rate of less than +1 mm·year−1, with an overwhelming subsidence component, and negligible acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Boretti A (2012a) Is there any support in the long term tide gauge data to the claims that parts of Sydney will be swamped by rising sea levels? Coast Eng 64:161–167

    Article  Google Scholar 

  • Boretti A (2012b) Short term comparison of climate model predictions and satellite altimeter measurements of sea levels. Coast Eng 60:319–322

    Article  Google Scholar 

  • Boretti A (2020a) Analysis of segmented sea level time series. Appl Sci 10(2):625

    Article  Google Scholar 

  • Boretti A (2020b) Relative sea-level rise and land subsidence in Oceania from tide gauge and satellite GPS. Nonlinear Eng 9:175–193

    Article  Google Scholar 

  • Boretti A (2021) Absolute and relative sea-level rise in the New York City area by measurements from tide gauges and satellite global positioning system. J Ocean Eng Sci 6(1):54–61

    Article  Google Scholar 

  • Boretti A (2021b) Is the online global mean sea level information reliable? Int J Glob Warm 25(1):77–99

    Article  Google Scholar 

  • Brundrit GB (1995) Trends of Southern African sea level: statistical analysis and interpretation. S Afr J Mar Sci 16(1):9–17

    Article  Google Scholar 

  • Bustos Usta DF, Torres Parra RR (2021) Ocean and atmosphere changes in the Caribbean Sea during the twenty-first century using CMIP5 models. Ocean Dyn 71(6):757–777

    Article  Google Scholar 

  • Chambers DP, Merrifield MA, Nerem RS (2012) Is there a 60-year oscillation in global mean sea level? Geophys Res Lett 39(18):GL052885

    Article  Google Scholar 

  • Colorado University sea level research group (2022) Sea level trends from satellite altimeters. sealevel.colorado.edu/trend-map

  • Dean RG, Houston JR (2013) Recent sea level trends and accelerations: comparison of tide gauge and satellite results. Coast Eng 75:4–9

    Article  Google Scholar 

  • Douglas BC (1992) Global sea level acceleration. J Geophys Res Oceans 97(C8):12699–12706

    Article  Google Scholar 

  • Douglas BC, Peltier WR (2002) The puzzle of global sea-level rise. Phys Today 55(3):35–41

    Article  Google Scholar 

  • Holgate SJ (2007) On the decadal rates of sea level change during the twentieth century. Geophys Res Lett 34(1):GL028492

    Article  Google Scholar 

  • Houston JR, Dean RG (2011) Sea-level acceleration based on US tide gauges and extensions of previous global-gauge analyses. J Coast Res 27(3):409–417

    Article  Google Scholar 

  • Humlum O (2022) Climate 4 you. www.climate4you.com/. Accessed 1 June 2023

  • IPCC (2018) WG1AR5 Chapter 13. www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter13_FINAL.pdf. Accessed 1 June 2023

  • Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res Oceans 111(C9):C003229

    Article  Google Scholar 

  • Marcos M, Tsimplis MN (2008) Coastal sea level trends in Southern Europe. Geophys J Int 175(1):70–82

    Article  Google Scholar 

  • Mazzarella A, Scafetta N (2012) Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theor Appl Climatol 107(3):599–609

    Article  Google Scholar 

  • Mörner NA (2010) Some problems in the reconstruction of mean sea level and its changes with time. Quat Int 221(1-2):3–8

    Article  Google Scholar 

  • Mörner NA (2017) Sea level manipulation. Int j eng sci invention 6(8):48–51

    Google Scholar 

  • NGL (2020) Nevada Geodetic Laboratory. geodesy.unr.edu. Accessed 1 June 2023

  • NOAA (2020) Trends. tidesandcurrents.noaa.gov/sltrends/sltrends_global.htm. Accessed 1 June 2023

  • Pan H, Lv X (2021) Is there a quasi 60-year oscillation in global tides? Cont Shelf Res 222:104433

    Article  Google Scholar 

  • Parker A, Ollier CD (2016) Coastal planning should be based on proven sea level data. Ocean Coast Manag 124:1–9

    Article  Google Scholar 

  • Parker A, Ollier CD (2017) Is the sea level stable at Aden, Yemen? Earth Syst Environ 1(2):1–13

    Article  Google Scholar 

  • PSMSL (2020) Trends. www.psmsl.org/products/trends/. Accessed 1 June 2023

  • PSMSL (2022) Map. www.psmsl.org/data/obtaining/map.html. Accessed 1 June 2023

  • Raicich F (2008) A review of sea level observations and low frequency sea-level variability in South Atlantic. Phys Chem Earth 33(3-4):239–249

    Article  Google Scholar 

  • Ross T, Garrett C, Le Traon PY (2000) Western Mediterranean sea-level rise: changing exchange flow through the Strait of Gibraltar. Geophys Res Lett 27(18):2949–2952

    Article  Google Scholar 

  • SONEL (2020) Sea Level Trends. www.sonel.org/-Sea-level-trends-.html?lang=en. Accessed 1 June 2023

  • Wenzel M, Schröter J (2010) Reconstruction of regional mean sea level anomalies from tide gauges using neural networks. J Geophys Res Oceans 115(C8):JC005630

    Article  Google Scholar 

  • Woodworth PL, Aman A, Aarup T (2007) Sea level monitoring in Africa. Afr J Mar Sci 29(3):321–330

    Article  Google Scholar 

  • Wöppelmann G, Letetrel C, Santamaria A, Bouin M-N, Collilieux X, Altamimi Z, Williams SDP, Martin Miguez B (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607

    Article  Google Scholar 

  • Wöppelmann G, Marcos M (2012) Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J Geophys Res Oceans 117(C1):JC007469

    Article  Google Scholar 

  • Wöppelmann G, Miguez BM, Bouin MN, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change 57(3-4):396–406

    Article  Google Scholar 

  • Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Climate 20(24):5889–5911

    Article  Google Scholar 

  • Zhongming Z, Linong L, Xiaona Y, Wangqiang Z and Wei L (2021) AR6 climate change 2021: the physical science basis. 119.78.100.173/C666/handle/2XK7JSWQ/270167

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Boretti.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boretti, A. Rates of sea-level rise from tide gauge measurements and satellite global positioning system along the Atlantic Coast of Africa. Arab J Geosci 16, 444 (2023). https://doi.org/10.1007/s12517-023-11540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11540-9

Keywords

Navigation