Skip to main content

Advertisement

Log in

Habitat characterizations and suitability analysis for conservation implications of Gymnosphaera gigantea (Wall. ex Hook.) S.Y.Dong: a threatened tree fern

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Elucidating the relative importance of landscape composition including habitat structure, landscape features, and environmental factors can help prioritize management action for developing effective conservation measures. The present study aims to investigate the habitat characteristics, relative influence of key habitat environmental factors on the abundance of Gymnosphaera gigantea and to propose suitable habitats for conservation implications in the study area. Statistical modelling, habitat suitability analyses, and micro-level land use planning were done through the generalized linear models (GLMs), geostatistic interpolation based on Entropy Weighted Habitat Index (EWHI) and synthetic indicator (SI), and Strength-Weakness-Opportunity-Threat (SWOT) analysis, respectively, using significant habitat environmental factors derived from principal component analysis (PCA). A total of 57 (28 juvenile and 29 adults) individuals of G. gigantea was recorded from 19 populations with altitude varying from 59–747 m asl. GLMs analysis revealed that the vegetation and water occurrence as well as their combination significantly affects the abundance of G. gigantea. Suitability analysis and micro-level land use planning resulted in two priority areas (priority area I and II) in Tripura having greater potential for future conservation planning and reintroduction of this threatened fern. Overall, considering the fragmented populations and smaller patch size, the conservation of study species will require an integrated landscape as well as local-scale geospatial habitat management strategies to protect the natural populations and enhance the distributional range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source: Prepared by the authors, 2022 using ArcMap v.10.8)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are presented in the published article and in the online supplementary files.

Abbreviations

AIC:

Akaike’s Information Criterion

ΔAICc:

Delta Akaike’s Information Criterion corrected

ASI:

Alternative synthetic indicator

BD:

Bulk density

DEM:

Digital elevation model

EWHI:

Entropy Weighted Habitat Index

GSI:

Generalized synthetic indicator

GIS:

Geographic information system

GLMs:

Generalized linear models

IDW:

Inverse distance weighted

IUCN:

International Union for Conservation of Nature

IVI:

Importance Value Index

LULC:

Land use and land cover

NDVI:

Normalized Difference Vegetation Index

NDWI:

Normalized Difference Water Index

SI:

Synthetic indicator

SOC%:

Soil organic carbon %

SWOT Analysis:

Strengths, Weaknesses, Opportunities, and Threats Analysis

TWI:

Topographic Wetness Index

References

  • Abella SR, Covington WW (2006) Vegetation–environment relationships and ecological species groups of an Arizona Pinus ponderosa landscape, USA. Plant Ecol 185:255–268. https://doi.org/10.1007/s11258-006-9102-y

  • Adhikari D, Mir AH, Upadhaya K, Iralu V, Roy DK (2018) Abundance and habitat-suitability relationship deteriorate in fragmented forest landscapes: a case of Adinandra griffithii Dyer, a threatened endemic tree from Meghalaya in northeast India. Ecol Process. https://doi.org/10.1186/s13717-018-0114-z

    Article  Google Scholar 

  • Aminu M, Matori AN, Yusof KW, Malakahmad A, Zainol RB (2015) A GIS-based water quality model for sustainable tourism planning of Bertam River in Cameron Highlands, Malaysia. Environ Earth Sci 73(10):6525–6537. https://doi.org/10.1007/s12665-014-3873-6

    Article  Google Scholar 

  • Arenas-Castro S, Goncalves J, Alves P, Alcaraz-Segura D, Honrado JP (2018) Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling. PLoS One 13(6):e0199292. https://doi.org/10.1371/journal.pone.0199292

    Article  Google Scholar 

  • Arenas-Castro S, Regos A, Gonçalves JF, Alcaraz-Segura D, Honrado J (2019) Remotely sensed variables of ecosystem functioning support robust predictions of abundance patterns for rare species. Remote Sens 11(18):2086. https://doi.org/10.3390/rs11182086

    Article  Google Scholar 

  • Arens NC, Baracaldo PS (1998) Distribution of tree ferns (Cyatheaceae) across the successional mosaic in an Andean cloud forest, Nariño, Colombia. Am Fern J 88:60–71. https://doi.org/10.2307/1547225

    Article  Google Scholar 

  • Asolkar LV, Kakkar KK, Chakre OJ (1992) Second supplement to glossary of Indian medicinal plants with active principles, Part-1 (A-K). CSIR, New Delhi

  • Bach CE (1988) Effects of host plant patch size on herbivore density: patterns. Ecology 69:1090–1102. https://doi.org/10.2307/1941264

    Article  Google Scholar 

  • Balram S, Dragićević S, Meredith T (2004) A collaborative GIS method for integrating local and technical knowledge in establishing biodiversity conservation priorities. Biodivers Conserv 13:1195–1208. https://doi.org/10.1023/B:BIOC.0000018152.11643.9c

    Article  Google Scholar 

  • Banda T, Schwartz MW, Caro T (2006) Woody vegetation structure and composition along a protection gradient in a miombo ecosystem of western Tanzania. For Ecol Manag 230:179–185. https://doi.org/10.1016/j.foreco.2006.04.032

    Article  Google Scholar 

  • Barik SK, Tiwari ON, Adhikari D, Singh PP, Tiwary R, Barua S (2018) Geographic distribution pattern of threatened plants of India and steps taken for their conservation. Curr Sci 114(3):470–503. https://doi.org/10.18520/cs/v114/i03/470-503

    Article  Google Scholar 

  • Beard JS (1955) The classification of tropical American vegetation types. Ecology 36:89–100

    Article  Google Scholar 

  • Birhanu L, Bekele T, Tesfaw B, Demissew S (2021) Relationships between topographic factors, soil and plant communities in a dry Afromontane forest patches of Northwestern Ethiopia. PLoS ONE 16(3):e0247966. https://doi.org/10.1371/journal.pone.0247966

    Article  Google Scholar 

  • Blacke GR, Hedge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, 2nd edn. Agron Monograph, ASA and SSSA, Madison, pp 363–375

    Google Scholar 

  • Blanco-Canqui H, Lal R (2008) No-tillage and soilprofile carbon sequestration: an on-farm assessment. Soil Sci Soc Am J 72(3):693–701. https://doi.org/10.2136/sssaj2007.0233

    Article  Google Scholar 

  • Braun R, Amorim A (2014) Rapid ‘SWOT’ diagnosis method for conservation areas. Scottish Geogr J 131(1):17–35. https://doi.org/10.1080/14702541.2014.937910

    Article  Google Scholar 

  • Burgess N, Kuper W, Mutke J, Brown J, Westaway S, Turpie S, Meshack C, Taplin J, McClean C, Lovett JC (2005) Major gaps in the distribution of protected areas for threatened and narrow range Afrotropical plants. Biodivers Conserv 14:1877–1894. https://doi.org/10.1007/s10531-004-1299-2

    Article  Google Scholar 

  • Burke A (2001) Classification and ordination of plant communities of the Naukluft Mountains, Namibia. J Veg Sci 12:53–60. https://doi.org/10.2307/3236673

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Bystriakova N, Bader M, Coomes DA (2011) Long-term tree fern dynamics linked to disturbance and shade tolerance. J Veg Sci 22(1):72–84. https://doi.org/10.1111/j.1654-1103.2010.01227.x

    Article  Google Scholar 

  • Campbell DG, Stone JL, Rosas JA (1992) A comparison of the phytosociology and dynamics of three floodplain (varzea) forest of known ages, Rio Jurua, western Brazilian Amazon. Bot J Linn Soc 108(3):213–237. https://doi.org/10.1111/j.1095-8339.1992.tb00240.x

    Article  Google Scholar 

  • Champion HG, Seth SK (1968) A revised survey of the forest types of India. Govt of India publications, New Delhi

    Google Scholar 

  • Chandra S, Fraser-Jenkins CR, Kumari A, Srivastava A (2008) A summary of the status of threatened pteridophytes of India. Taiwania 53(2):170–209

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62(2):361–371

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Book  Google Scholar 

  • Chapungu L, Nhamo L (2016) An assessment of the impact of climate change on plant species richness through an analysis of the normalised difference water index (NDWI) in Mutirikwi sub-catchment, Zimbabwe. South S Afr J Geomat 5(2):244–268

    Google Scholar 

  • Chiang SH, Chang KT (2009) Application of radar data to modelling rainfall-induced landslides. Geomorphology 103:299–309

    Article  Google Scholar 

  • Chowdhury MAM, Auda MK, Iseam ASMT (2000) Phytodiversity of Dipterocarpus turbinatus Gaertn. F. (Garjan) under growths at Dulahazara garjan forest, Cox’s Bazar, Bangaladesh. Indian For 126(6):674–684

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  Google Scholar 

  • Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E (2014) Potential species distribution modeling and the use of principal component analysis as predictor variables. Rev Mex Biodivers 85(1):189–199. https://doi.org/10.7550/rmb.36723

    Article  Google Scholar 

  • Culmsee H, Schmidt M, Schmiedel I, Schacherer A, Meyer P, Leuschner C (2014) Predicting the distribution of forest habitat types using indicator species to facilitate systematic conservation planning. Ecol Indic 37:131–144. https://doi.org/10.1016/j.ecolind.2013.10.010

    Article  Google Scholar 

  • Curtis JT, McIntosh RP (1950) The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31:434–455

    Article  Google Scholar 

  • Das S, Dey A, Deb L, Das B, Duttachoudhury M, Sutradhar J (2013) Antioxidant and anti-inflammatory activity of methanol extracts of bark of Cyathea gigantea. J Nat Pharm 4(2):126–132

    Google Scholar 

  • Dauber J, Biesmeijer JC, Gabriel D, Kunin WE, Lamborn E, Meyer B, Nielsen A, Potts SG, Roberts SPM, Sober V, Settele J, Steffan-Dewenter I, Stout JC, Teder T, Tscheulin T, Vivarelli D, Petanidou T (2010) Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol 98(1):188–196. https://doi.org/10.1111/j.1365-2745.2009.01590.x

    Article  Google Scholar 

  • Deák B, Valkó O, Török P, Kelemen A, Bede A, Csathó AI, Tóthmérész B (2018) Landscape and habitat filters jointly drive richness and abundance of specialist plants in terrestrial habitat islands. Landsc Ecol 33:1117–1132. https://doi.org/10.1007/s10980-018-0660-x

    Article  Google Scholar 

  • Deb DB (1981) The flora of Tripura State. Vols.I–II. Today and Tomorrow’s Printers and Publishers, New Delhi

  • Devi LS, Yadava PS (2006) Floristic diversity assessment and vegetation analysis of tropical semi evergreen forest of Manipur, north east India. Trop Ecol 47(1):89–98

    Google Scholar 

  • Dulić J, Ljubojević M, Savić D, Ognjanov V, Dulić T, Barać G, Milović M (2020) Implementation of SWOT analysis to evaluate conservation necessity and utilization of natural wealth: terrestrial orchids as a case study. J Environ Plan Manag 63(12):2265–2286. https://doi.org/10.1080/09640568.2020.1717935

    Article  Google Scholar 

  • Elliott GP, Kipfmueller KF (2010) Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the Southern Rocky Mountains, USA. Arct Antarct Alp Res 42(1):45–56. https://doi.org/10.1657/1938-4246-42.1.45

    Article  Google Scholar 

  • Eshaghi RJ, Shafiei AB (2010) The distribution of ecological species groups in Fagetum communities of Caspian forests: determination of effective environmental factors. Flora: Morphol Distrib Funct Ecol Plants 205(11):721–727. https://doi.org/10.1016/j.flora.2010.04.015

    Article  Google Scholar 

  • Gachet S, Véla E, Tationi T (2005) BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers Conserv 14:1023–1034. https://doi.org/10.1007/s10531-004-8411-5

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Guiasu RC, Guiasu S (2010) New measures for comparing the species diversity found in two or more habitats. Int J Unc Fuzz Knowl Based Syst 18(6):691–720

    Article  Google Scholar 

  • Gupta AK (2003) Biodiversity and wildlife research in Northeast India: new initiatives by the Wildlife Institute of India. In: Gupta AK, Kumar A, Ramakantha V (ed) Wildlife and protected areas, conservation of rainforests in India, Envis Bull Himal Ecol, Uttarakhand, pp 227–238

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42(5):989–993. https://doi.org/10.1111/jbi.12478

    Article  Google Scholar 

  • Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ, Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794. https://doi.org/10.7717/peerj.4794

    Article  Google Scholar 

  • Hartig F (2018) sDHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v. 0.2. 0

  • Hassler M, Swale B (2001) World fern statistics by country. http://homepages.caverock.net.nz/*bj/fern/ferndist.htm. Accessed 22 June 2021

  • Hijmans R, Guarino L, Mathur P (2012) Diva GIS manual. Diva GIS, Berkeley

    Google Scholar 

  • Ho YW, Huang YL, Chen JC, Chen CT (2016) Habitat environment data and potential habitat interpolation of Cyathea lepifera at the Tajen Experimental Forest Station in Taiwan. Trop Conserv Sci 9(1):153–166. https://doi.org/10.1177/194008291600900108

    Article  Google Scholar 

  • Hockings M (2003) Systems for assessing the effectiveness of management in protected areas. Bioscience 53(9):823–832. https://doi.org/10.1641/0006-3568(2003)053[0823:SFATEO]2.0.CO;2

    Article  Google Scholar 

  • Hooker JD (1872) The Flora of British India. 7 vols. L. Reeva and Company, London. http:// homepages.caverock.net.nz/~bj/fern/list.htm. Accessed 13th March 2021

  • Hughes RM, Kaufmann PR, Weber MH (2011) National and regional comparisons between Strahler order and stream size. J North Am Benthol Soc 30(1):103–121

    Article  Google Scholar 

  • ISFR (India State of Forest Report) (2021) https://fsi.nic.in/forest-report-2021-details. Accessed 13 June 2022

  • IUCN (International Union for Conservation of Nature and Natural Resources) (2014) The IUCN Red List of Threatened Species. Version 2014.2. http://www.iucnredlist.org. Accessed 13 March 2021

  • Jain SK, Rao RR (1977) A handbook of field and herbarium methods. Today and Tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  • Janssen T (2006) A moulding method to preserve tree fern trunk surfaces including remarks on the composition of tree fern herbarium specimens. Fern Gazette 17(6,7,8):283–295

    Google Scholar 

  • Jolliffe IT (2002) Principal component analysis (2nd ed) Aberdeen, UK, Springer; pp. 487

  • Kala CP (2005) Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. J Ethnobiol Ethnomed 1(1):1–8

    Article  Google Scholar 

  • Kanjilal VN, Kanjilal PC, Das A, De RN, Bor NL (1934) Flora of Assam, 5 vols. Government Press, Shillong

  • Kent M, Coker P (1992) Vegetation description and analysis: a practical approach. Wiley, Baffins Lane

    Google Scholar 

  • Khan ML, Upadhyaya K, Singha LB, Devi A (2002) A plea for conservation of threatened tree fern (Cyathea gigantea). Curr Sci 82(4):375–376

    Google Scholar 

  • Khare PB, Behera SK, Srivastava R, Shukla SP (2005) Studies on reproductive biology of a threatened tree fern, Cyathea spinulosa Wall. ex Hook. Curr Sci 89:173–177

    Google Scholar 

  • Khurana E, Singh JS (2001) Ecology of seed and seedling growth for conservation and restoration of the tropical dry forest: a review. Environ Conserv 28:39–52

    Article  Google Scholar 

  • Kiran PM, Vijaya Raju A, Ganga Rao B (2012) Investigation of hepatoprotective activity of Cyathea gigantea (Wall. ex. Hook.) leaves against paracetamol-induced hepatotoxicity in rats. Asian Pac J Trop Biomed 2(5):352–356

    Article  Google Scholar 

  • Koo KS, Park D, Oh HS (2019) Analyzing habitat characteristics and predicting present and futuresuitable habitats of Sibynophis chinensis based on a climate change scenario. J Asia Pac Biodivers 12:1–6

    Article  Google Scholar 

  • Korall P, Pryer KM, Metzgar JS, Schneider H, Conant DS (2006) Tree ferns: monophyletic groups and their relationships as revealed by four protein-coding plastid loci. Mol Phylogenet Evol 39:830–845

    Article  Google Scholar 

  • Korner C (1992) Response of alpine vegetation to global climate change. Catena 22:85–96

    Google Scholar 

  • Kramer KU, Green PS (1990) Pteridophytes and gymnospermes. In: Kubitzki K (ed) The families and genera of vascular plants, vol 1. Springer-Verlag, Berlin

    Google Scholar 

  • Kumar M, Ramesh M, Sequiera S (2003) Medicinal pteridophytes of Kerala, South India. Indian Fern J 20:1–28

    Google Scholar 

  • Kumar A, Marcot BG, Saxena A (2006) Tree species diversity and distribution patterns in tropical forests of Garo Hills. Curr Sci 91(10):1370–1381

    Google Scholar 

  • Kurup VV (2007) Studies on the diversity and conservation aspects of primitive ferns of South India. Ph.D. thesis, Department of Botany, University of Calicut, Kerala

  • Labiak PH, Matos FB (2009) Cyathea atrocastanea a new tree fern from the Atlantic rain forest of Southeastern Brazil. Syst Bot 34(3):476–480. https://doi.org/10.1600/036364409789271326

    Article  Google Scholar 

  • Large MF, Braggins JE (2004) Tree ferns. Timber Press, Oregon

    Google Scholar 

  • Li Y, Ding C (2016) Effects of sample size, sample accuracy and environmental variables on predictive performance of MaxEnt model. Pol J Ecol 64(3):303–312. https://doi.org/10.3161/15052249PJE2016.64.3.001

    Article  Google Scholar 

  • Lira-Noriega A, Manthey JD (2014) Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68(4):1082–1093. https://doi.org/10.1111/evo.12343

    Article  Google Scholar 

  • Liu Y, Su X, Shrestha N, Xu X, Wang S, Li Y, Wang Q, Sandanov D, Wang Z (2019) Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms. Ecography 42(2):334–345. https://doi.org/10.1111/ecog.03698

    Article  Google Scholar 

  • Majumdar K, Shankar U, Datta BK (2012) Tree species diversity and stand structure along major community types in lowland primary and secondary moist deciduous forests in Tripura, Northeast India. J For Res 23(4):553–568. https://doi.org/10.1007/s11676-012-0295-8

    Article  Google Scholar 

  • Majumdar K, Adhikari D, Datta BK, Barik SK (2019) Identifying corridors for landscape connectivity using species distribution modeling of Hydnocarpus kurzii (King) Warb., a threatened species of the Indo-Burma Biodiversity Hotspot. Landsc Ecol Eng 15(1):13–23. https://doi.org/10.1007/s11355-018-0353-2

  • Majumdar K, Datta BK (2018) Forest type classification of Tripura in Northeast India: an overview on historical aspects and present ecological approaches. Plant Diversity in the Himalaya Hotspot Region, Bishen Singh Mahendra Pal Singh, Dehradun, India

  • Martins G, Brito AG, Nogueira R et al (2013) Water resources management in southern Europe: clues for a research and innovation based regional hypercluster. J Environ Manage 119:76–84

    Article  Google Scholar 

  • Mattivi P, Franci F, Lambertini A, Bitelli G (2019) TWI computation: a comparison of different open source GISs. Open geospatial data, softw stand 4(1):1–12. https://doi.org/10.1186/s40965-019-0066-y

  • Mazerolle MJ (2020) Model selection and multimodel inference using the AICcmodavg package. https://cran.r-project.org/package=AICcmodavg. Accessed 24 March 2022

  • Mehltreter K (2006) Leaf phenology of the climbing fern Lygodium venustum in a semi deciduous lowland forest on the Gulf of Mexico. Am Fern J 96(1):21–30. https://doi.org/10.1640/0002-8444(2006)96[21:LPOTCF]2.0.CO;2

    Article  Google Scholar 

  • Mishra N, Behera SK (2020) Tree ferns and giant ferns in India: their significance and conservation. In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6358-0_3

    Chapter  Google Scholar 

  • Mishra A, Sharma CM, Sharma SD, Baduni NP (2000) Effect of aspect on the structure of vegetation community of moist Bhavar and Tarai Shorea robusta forest in Central Himalaya. Indian For 126:634–642

    Google Scholar 

  • Mueller-Dombois B, Ellenberg H (1974) Aims and method of vegetation ecology. John Wiley and Sons Inc, New York

    Google Scholar 

  • Nagano T, Suzuki E (2007) Leaf demography and growth pattern of the tree fern Cyathea spinulosa in Yakushima Island. Tropics 16(1):47–57. https://doi.org/10.3759/tropics.16.47

    Article  Google Scholar 

  • Nagendra H, Lucas R, Honrado JP, Jongman RH, Tarantino C, Adamo M, Mairota P (2013) Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol Indic 33:45–59. https://doi.org/10.1016/j.ecolind.2012.09.014

    Article  Google Scholar 

  • Narayanan J, Antonysamy JMA (2017) Larvicidal potential of Cyathea species against Culex quinquefasciatus. Pharm Biomed Res 3(1):48–51

    Article  Google Scholar 

  • Natesan S, Govindaswamy V, Mani S, Sekar S (2021) Groundwater quality assessment using GIS technology in Kadavanar Watershed, Cauvery River, Tamil Nadu, India. Arab J Geosci 14:1–22. https://doi.org/10.1007/s12517-020-06414-3

    Article  Google Scholar 

  • Nath K, Talukdar AD, Bhattacharya MK, Bhowmik D, Chetri S, Choudhury D, Mitra A, Choudhury NA (2019) Cyathea gigantea (Cyatheaceae) as an antimicrobial agent against multidrug resistant organisms. BMC Complement Altern Med 19(1):1–8. https://doi.org/10.1186/s12906-019-2696-0

    Article  Google Scholar 

  • Niklas K, Tiffney B, Knoll A (1983) Patterns in vascular land plant diversification. Nature 303:614–616. https://doi.org/10.1038/303614a0

    Article  Google Scholar 

  • Nikolaou IE, Evangelinos KI (2010) A SWOT analysis of environmental management practices in Greek mining and mineral industry. Resour Policy 35(3):226–234

    Article  Google Scholar 

  • Ntuli NN, Nicastro KR, Zardi GI, Assis J, McQuaid CD, Teske PR (2020) Rejection of the genetic implications of the “Abundant Centre Hypothesis” in marine mussels. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-57474-0

    Article  Google Scholar 

  • Olson D, Dinerstein E (2002) The Global 200: priority ecoregions for global conservation. Ann Mo Bot Gard 89(2):199–224. https://doi.org/10.2307/3298564

    Article  Google Scholar 

  • Ormsby AA, Bhagwat SA (2010) Sacred forests of India: a strong tradition of community-based natural resource management. Environ Conserv 37(3):320–326. https://doi.org/10.1017/S0376892910000561

    Article  Google Scholar 

  • Ough K, Murphy A (2004) Decline in tree-fern abundance after clear fell harvesting. Forest Ecol Manag 199(1):153–163. https://doi.org/10.1016/j.foreco.2004.05.030

    Article  Google Scholar 

  • Pandey SK, Shukla RP (2003) Plant diversity in managed sal (Shorea robusta Gaertn.) forests of Gorakhpur, India: species composition, regeneration and conservation. Biodivers Conserv 12(11):2295–2319

  • Paul A, Bhattacharjee S, Choudhury BI, Khan ML (2015) Population structure and regeneration status of Cyathea gigantea (Wallich ex Hook. f.) Holttum, a tree fern in Arunachal Pradesh, India. J For Environ Sci 31(3):164–176. https://doi.org/10.7747/JFES.2015.31.3.164

  • Peet RK (2000) Forests and meadows of the Rocky Mountains. In: Barbour MG, Billings WD (eds) North American terrestrial Vegetation, 2nd edn. Cambridge University Press, United Kingdom, pp 001–695

    Google Scholar 

  • Pfab MF, Victor JF, Armstrong AJ (2011) Application of the IUCN red listing system to setting species targets for conservation planning purposes. Biodivers Conserv 20(5):1001–1012. https://doi.org/10.1007/s10531-011-0009-0

    Article  Google Scholar 

  • Phatthanaphraiwan S, Zeitler L, Fairfield B (2022) The pagoda of the Gods: a case for indigenous Karen sacred sites as special cultural zones along Thailand’s borders. For Soc 6(2):675–698. https://doi.org/10.24259/fs.v6i2.20962

    Article  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Piñeiro A, Barja I, Otero GP, Silván G, Illera JC (2015) No effects of habitat, prey abundance and competitor carnivore abundance on fecal cortisol metabolite levels in wildcats (Felis silvestris). Ann Zool Fenn 52(1–2):90–102. https://doi.org/10.5735/086.052.0208

    Article  Google Scholar 

  • Poulos HM, Taylor AH, Beaty RM (2007) Environmental controls on dominance and diversity of woody plant species in a Madrean, Sky Island ecosystem, Arizona, USA. Plant Ecol 193:15–30. https://doi.org/10.1007/s11258-006-9245-x

    Article  Google Scholar 

  • POWO (2022) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://www.plantsoftheworldonline.org/. Accessed 20 April 2022

  • Pradhan MP, Ghose MK, Kharka YR (2012) Automatic association of Strahler’s order and attributes with the drainage system. Int J Adv Comput Sci Appl 3(8):30–33

    Google Scholar 

  • R Development Core Team (2022) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Version 4.2.0, Available at https://www.R-project.org

  • Ranil RHG, Pushpakumara DKNG, Wijesundara DSA, Bostock PD, Ebihara A, Fraser-Jenkins CR (2017) Diversity and distributional ecology of tree ferns of Sri Lanka: a step towards conservation of a unique gene pool. Ceylon J Sci 46(5):127–135. https://doi.org/10.4038/cjs.v46i5.7460

    Article  Google Scholar 

  • Rauch P (2007) SWOT analyses and SWOT strategy Formulation for forest owner cooperations in Austria. Eur J For Res 126(3):413–420. https://doi.org/10.1007/s10342-006-0162-2

    Article  Google Scholar 

  • Rostami AA, Isazadeh M, Shahabi M, Nozari H (2019) Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran. Environ Sci Pollut Res 26(34):34993–35009. https://doi.org/10.1007/s11356-019-06591-z

    Article  Google Scholar 

  • Rout SD, Panda T, Mishra N (2009) Ethnomedicinal studies on some pteridophytes of similipal biosphere reserve, Orissa, India. Int J Med Med Sci 1(5):192–197. https://doi.org/10.5897/IJMMS.9000099

    Article  Google Scholar 

  • Roy PS, Karnatak H, Kushwaha SPS, Roy A, Saran S (2012) India’s plant diversity database at landscape level on geospatial platform: prospects and utility in today’s changing climate. Curr Sci 102(8):1136–1142

    Google Scholar 

  • Roy PS, Roy A, Joshi PK, Kale MP, Srivastava VK, Srivastava SK, Dwevidi RS, Joshi C, Behera MD, Meiyappan P, Sharma Y (2015) Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sens 7(3):2401–2430

    Article  Google Scholar 

  • Roy B, Roy S, Mitra S, Manna AK (2021) Evaluation of groundwater quality in West Tripura, Northeast India, through combined application of water quality index and multivariate statistical techniques. Arab J Geosci 14(19):1–18. https://doi.org/10.1007/s12517-021-08384-6

    Article  Google Scholar 

  • Roy S, Hore S, Mitra S, Chaberek G (2022) Delineating regional differentiation on the development of the railway infrastructure in Northeast India through an efficient synthetic indicator. Transp Probl 17(3):149–162. https://doi.org/10.20858/tp.2022.17.3.13

    Article  Google Scholar 

  • Sanjappa M, Lakshminarasimhan P (2011) CITES and plants. Sci Cult 77:62–67

    Google Scholar 

  • Sarkar M, Devi A (2014) Assessment of diversity, population structure and regeneration status of tree species in Hollongapar Gibbon Wildlife Sanctuary, Assam, Northeast India. Trop Plant Res 1(2):26–36

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38(2):406–416. https://doi.org/10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  • Scolozzi R, Schirpke U, Morri E, D’Amato D, Santolini R (2014) Ecosystem services-based SWOT analysis of protected areas for conservation strategies. J Environ Manage 146:543–551. https://doi.org/10.1016/j.jenvman.2014.05.040

    Article  Google Scholar 

  • Shankar U (2001) A case of high tree diversity in a sal (Shorea robusta)-dominated lowland forest of Eastern Himalaya: floristic composition, regeneration and conservation. Curr Sci 81(7):776–786

    Google Scholar 

  • Shannon CE, Wiener W (1963) The mathematical theory of communities. University of Illinois press, Urbana

    Google Scholar 

  • Shivaraj B, Barve N, Kiran MC, Shaanker RU, Ganeshaiah KN (2000) Mapping of forests based on biological diversity to identify conservation sites: a case study from Udupi and South Canara districts of Karnataka. J Indian Inst Sci 80:531–536

    Google Scholar 

  • Simberloff D (1972) Properties of the rarefaction diversity measurement. Am Nat 106:414–418

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688–688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Solon J, Degórski M, Roo-Zielińska E (2007) Vegetation response to a topographical-soil gradient. Catena 71(2):309–320. https://doi.org/10.1016/j.catena.2007.01.006

    Article  Google Scholar 

  • Thomas P, Newman M, Svengsuksa BK, Ketphanh S (2006) A Review of CITES Appendices I and II Plant Species From Lao PDR, A report for IUCN Lao PDR, pp 52

  • Toledo M, Peña-Claros M, Bongers F, Alarcón A, Balcázar J, Chuviña J, Leaño C, Licona JC, Poorter L (2012) Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J Ecol 100(1):253–263. https://doi.org/10.1111/j.1365-2745.2011.01890.x

    Article  Google Scholar 

  • Visalakshi N (1995) Vegetation analysis of two tropical dry evergreen forests in southern India. Trop Ecol 36:117–142

    Google Scholar 

  • Volkova L, Bennett LT, Tausz M (2011) Diurnal and seasonal variations in photosynthetic and morphological traits of the tree ferns Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) in wet sclerophyll forests of Australia. Environ Exp Bot 70(1):11–19. https://doi.org/10.1016/j.envexpbot.2010.06.001

    Article  Google Scholar 

  • Wadley RL, Colfer CJP (2004) Sacred forest, hunting, and conservation in West Kalimantan, Indonesia. Hum Ecol 32:313–338. https://doi.org/10.1023/B:HUEC.0000028084.30742.d0

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Wan HY, Cushman SA, Ganey JL (2019) Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas. Landsc Ecol 34:503–519. https://doi.org/10.1007/s10980-019-00788-w

    Article  Google Scholar 

  • Weber MM, Stevens RD, Diniz-Filho JAF, Grelle CEV (2016) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 40(7):817–828. https://doi.org/10.1111/ecog.02125

    Article  Google Scholar 

  • Westin MA (2009) Downie Slide:an integrated remote sensing approach to characterization of a very slow moving landslide. British Columbia, Canada, Simon Fraser University. https://www.researchgate.net/publication/320839898_Downie_Slide_An_integrated_remote_sensing_approach_to_characterization_of_a_very_slow_moving_landslide

  • Whittaker RH (1970) Communities and ecosystem. Macmillan, New York

    Google Scholar 

  • Winzeler HE, Owens PR, Read QD, Libohova Z, Ashworth A, Sauer T (2022) Topographic Wetness Index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization. Land 11(11):2018. https://doi.org/10.3390/land11112018

    Article  Google Scholar 

  • Wu XB, Smeins FE (2000) Multiple-scale habitat modeling approach for rare plant conservation. Landsc Urban Plan 51(1):11–28. https://doi.org/10.1016/S0169-2046(00)00095-5

    Article  Google Scholar 

  • Yavitt JB, Harms KE, Garcia MN, Wright SJ, He F, Mirabello MJ (2009) Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Aust J Soil Res 47(7):674–687. https://doi.org/10.1071/SR08258

    Article  Google Scholar 

Download references

Acknowledgements

This paper is part of the doctoral research of the first author, who is grateful to the Department of Biotechnology (DBT), Govt. of India for financial support through DBT Network Project (BT/01/17/NE/TAX) and implementing Agency Ashoka Trust for Research in Ecology and the Environment (ATREE). We are also thankful to the Principal Chief Conservator of Forest (PCCF), Tripura Forest Department, Govt. of Tripura for cooperation. We would like to especially thank the local community people for sharing their knowledge and consistent support during the field survey. We would like to acknowledge the anonymous reviewers for their constructive criticism and important suggestions to improve the quality of the manuscript.

Funding

We gratefully acknowledge the Department of Biotechnology (DBT), Govt. of India (BT/01/17/NE/TAX) for its financial support in completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biplab Banik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Haroun Chenchouni

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 151 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banik, B., Roy, S., Paul, S. et al. Habitat characterizations and suitability analysis for conservation implications of Gymnosphaera gigantea (Wall. ex Hook.) S.Y.Dong: a threatened tree fern. Arab J Geosci 16, 414 (2023). https://doi.org/10.1007/s12517-023-11522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11522-x

Keywords

Navigation