Skip to main content

Advertisement

Log in

Anatexis of metadiorite from the Yaoundé area, Central African Orogenic Belt in Cameroon: implications on the genesis of in-source granodiorite leucosomes

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This paper presents integrated whole-rock geochemistry, LA-ICP-MS zircon U–Pb geochronology, and zircon and monazite thermometry of the Yaounde in-source granodiorite leucosomes in order to better constrain the crustal growth of the Yaoundé segment of the Central African Orogenic Belt (CAOB). The Yaoundé area is dominantly made up of extensively melted metadiorites hosting partially digested enclaves of metasediments and in-source granodiorite leucosomes. Field investigations have revealed that the regional structure is dominated by the shallow-dipping to occasionally subvertical Sn foliation characterized by variable trending resulting to the transposition of the locally E-W trending Sn-1 foliation in metadiorite. New LA-ICP-MS zircon U–Pb geochronology indicates partial melting age crystallization at 595 ± 4 Ma for the in-source granodiorite leucosomes. This in the Yaoundé area is coeval with and emplacement of some syntectonic granitoids of the CAOB. Metadiorites are high-K calc-alkaline while granodiorite leucosomes are medium-K calc-alkaline and both rocks are magnesian, display LREE enrichment, and LILE depletion as well as strong depletion in Nb–Ta, Sr, P, and Ti. The protholith of the Yaoundé metadiorites derived from partial melting of mixed source involving a metasomatized mantle with the contribution of crustal materials. In-source granodiorite leucosomes derived from the partial melting of metadiorites during a period of intense migmatization in the Yaoundé group. The average TZr TTi-in-zr and TREE (ca. 794 °C, 767 °C, 821 °C, respectively) estimates of the melts are similar to estimated temperatures (ca. 750–800 °C) for the host metadiorites, suggesting that the melting took place in the deep crustal level as inferred by estimated pressure of 9–13 kbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Tchakounté et al. 2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida FFM, Hasui Y, De Brito Neves BB, Fuck RA (1981) Brazilian structural provinces: an introduction. Earth Sci Rev 17:1–29. https://doi.org/10.1016/0012-8252(81)90003-9

    Article  Google Scholar 

  • Ball E, Bard JP, Soba D (1984) Tectonique tangentielle dans la catazone panafricaine du Cameroun: les gneiss de Yaoundé. J Afr Earth Sci (1983) 2:91–95

  • Betsi TB, Ngo Bidjeck Bondje LM, Mvondo H et al (2020) Rutile LA-ICP-MS U-Pb geochronology and implications for tectono-metamorphic evolution in the Yaoundé Group of the Neoproterozoic Central African Orogeny. J Afr Earth Sc 171:103939. https://doi.org/10.1016/j.jafrearsci.2020.103939

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks. Springer, Berlin

    Book  Google Scholar 

  • Cameron BI, Walker JA, Carr MJ et al (2003) Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. J Volcanol Geoth Res 119:21–50

    Article  Google Scholar 

  • Caron J-B, Gaines RR, Mángano MG et al (2010) A new Burgess Shale–type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology 38:811–814. https://doi.org/10.1130/G31080.1

    Article  Google Scholar 

  • Castaing C, Feybesse JL, Thiéblemont D et al (1994) Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks? Precambr Res 69:327–344. https://doi.org/10.1016/0301-9268(94)90095-7

    Article  Google Scholar 

  • Castro A (2013) Tonalite–granodiorite suites as cotectic systems: a review of experimental studies with applications to granitoid petrogenesis. Earth Sci Rev 124:68–95

    Article  Google Scholar 

  • Cates NL, Mojzsis SJ (2009) Metamorphic zircon, trace elements and Neoarchean metamorphism in the ca. 3.75 Ga Nuvvuagittuq supracrustal belt, Québec (Canada). Chem Geol 261:99–114. https://doi.org/10.1016/j.chemgeo.2009.01.023

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM et al (2010) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens Geology 38:1011–1014. https://doi.org/10.1130/G31285.1

    Article  Google Scholar 

  • Class C, Miller DM, Goldstein SL, Langmuir CH (2000) Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem Geophys Geosyst 1:1004

    Article  Google Scholar 

  • Clemens JD (1990) The granulite-granite connexion. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer Academic Publishers, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • Clemens JD, Watkins JM (2001) The fluid regime of high temperature metamorphism during granitoid magma genesis: contributions to. Mineral Petrol 140:600–606

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500. https://doi.org/10.2113/0530469

    Article  Google Scholar 

  • Da Silva Filho AF, Guimarães IP, Lyra De Brito ME, Plmentel MM (1997) Geochemical signatures of main Neoproterozoic late-tectonic granitoids from the Proterozoic Sergipano fold belt, Brazil: significance for the Brasiliano orogeny. Int Geol Rev 39:639–659

    Article  Google Scholar 

  • Davison I, Dos Santos RA (1989) Tectonic evolution of the Sergipano Fold Belt, NE Brazil, during the Brasiliano orogeny. Precambr Res 45:319–342. https://doi.org/10.1016/0301-9268(89)90068-5

    Article  Google Scholar 

  • Dawaï D, Bouchez J-L, Paquette J-L, Tchameni R (2013) The Pan-African quartz-syenite of Guider (north-Cameroon): magnetic fabric and U-Pb dating of a late-orogenic emplacement. Precambr Res 236:132–144

    Article  Google Scholar 

  • Dawaï D, Tchameni R, Bascou J et al (2017) Microstructures and magnetic fabrics of the Ngaoundéré granite pluton (Cameroon): implications to the late-Pan-African evolution of Central Cameroon Shear Zone. J Afr Earth Sc 129:887–897

    Article  Google Scholar 

  • De Brito Neves BB, Van Schmus WR, Fetter A (2002) North-western Africa–North-eastern Brazil. Major tectonic links and correlation problems. J Afr Earth Sc 34:275–278. https://doi.org/10.1016/S0899-5362(02)00025-8

    Article  Google Scholar 

  • De la Roche H (1980) A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses — its relationships with current nomenclature. Chem Geol 29:183–210. https://doi.org/10.1016/0009-2541(80)90020-0

    Article  Google Scholar 

  • El-Baily MZ, Hassen I (2012) The late Edicaran (580–590 Ma) onset of anorogenic alkaline magmatism in the Arabian-Nubian Shield: Katherina A-type rhyolites of Gabal Ma’ain, Sinai. Egypt Precambrian Research 216:1–22

    Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ et al (2001) A geochemical classification for granitic rocks. J Petrology 42:2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Ganwa AA, Frisch W, Siebel W et al (2008) Zircon 207Pb/206Pb evaporation ages of Panafrican metasedimentary rocks in the Kombé-II area (Bafia Group, Cameroon): constraints on protolith age and provenance. J Afr Earth Sc 51:77–88. https://doi.org/10.1016/j.jafrearsci.2007.12.003

    Article  Google Scholar 

  • Gao P, Zheng YF, Zhao ZF (2016) Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266–267:133–157

    Article  Google Scholar 

  • Graphchikov AA, Konilov AN, Clemens JD (1999) Biotite dehydration, partial melting, and fluid composition: experiments in the system KAlO2-FeO-MgO-SiO2-H2O-CO2. Am Miner 84:15–26

    Article  Google Scholar 

  • Gromet P, Silver LT (1987) REE variations across the Peninsular Ranges batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. J Petrol 28:75–125

    Article  Google Scholar 

  • Handley HK, Macpherson CG, Davidson JP et al (2007) Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex. J Petrol 48:1155–1183

    Article  Google Scholar 

  • Hansen E, Johansson L, Andersson J, La Barge L, Harlov D, Möller C, Vincent S (2015) Partial melting in amphibolites in a deep section of the Sveconorwegian Orogen, SW Sweden. Lithos 236:27–45

    Article  Google Scholar 

  • Hanyu T, Tatsumi Y, Nakai S, et al (2006) Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry. Geochemistry, Geophysics, Geosystems 7

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Article  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630. https://doi.org/10.1130/0091-7613(2000)28%3c627:REECOZ%3e2.0.CO;2

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62. https://doi.org/10.2113/0530027

    Article  Google Scholar 

  • Kriegsman L (2001) Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos 56:75–96

    Article  Google Scholar 

  • Lasserre M (1979) Cameroun: mise en évidence radiométrique de deux séries “d’embrechites” au sein de la zone mobile de l’Afrique centrale

  • Li X-H, Chen Y, Tchouankoue JP et al (2017) Improving geochronological framework of the Pan-African orogeny in Cameroon: new SIMS zircon and monazite U-Pb age constraints. Precambr Res 294:307–321

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z et al (2010) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Ludwig KR (2008) Squid 1.02: A User’s Manual: Berkeley Geochronology Center Special Publication 2, 19 p. Grenville: Ministère des Ressources Naturelles et de la Faune, Québec, DV 4:17

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. GSA. Bulletin 101:635–643. https://doi.org/10.1130/0016-7606(1989)101%3c0635:TDOG%3e2.3.CO;2

    Article  Google Scholar 

  • McDermott F, Harris NBW, Hawkesworth CJ (1996) Geochemical constraints on crustal anatexis: a case study from the Pan-African Damara granitoids of Namibia. Contrib Mineral Petrol 123:406–423

    Article  Google Scholar 

  • Metang V, Nkoumbou C, Tchakounté Numbem J, Njopwouo D (2014) Application of remote sensing for the mapping of geological structures in rainforest area: a case study at the Matomb-Makak Area, Center-South Cameroon. Journal of Geosciences and Geomatics 2:196–207. https://doi.org/10.12691/jgg-2-5-3

    Article  Google Scholar 

  • Middlemost EAK (1985) Magmas and magmatic rocks. An introduction to igneous petrology. Longman Group Ltd., London, New York, 266

  • Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Article  Google Scholar 

  • Mvondo H, den Brok SWJ, Mvondo Ondoa J (2003) Evidence for symmetric extension and exhumation of the Yaounde nappe (Pan-African fold belt, Cameroon). J Afr Earth Sc 36:215–231. https://doi.org/10.1016/S0899-5362(03)00017-4

    Article  Google Scholar 

  • Mvondo H, Owona S, Ondoa JM, Essono J (2007) Tectonic evolution of the Yaoundé segment of the Neoproterozoic Central African Orogenic Belt in southern Cameroon. Can J Earth Sci 44:433–444. https://doi.org/10.1139/e06-107

    Article  Google Scholar 

  • Nedelec A, Macaudiere J, Nzenti J-P, Barbey P (1986) Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun). Implications pour la structure de la zone mobile pan-africaine d’Afrique centrale, au contact du craton du Congo. C r Acad sci, Sér 2. Méc Phys Chim Sci Univers Sci Terre 303:75–80

    Google Scholar 

  • Ngako V, Affaton P, Nnange JM, Njanko T (2003) Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. J Afr Earth Sc 36:207–214. https://doi.org/10.1016/S0899-5362(03)00023-X

    Article  Google Scholar 

  • Ngako V, Njonfang E (2011) Plates amalgamation and plate destruction, the Western Gondwana history. Tectonics 3–34

  • Ngnotué T, Ganno S, Nzenti JP et al (2012) Geochemistry and geochronology of peraluminous high-K granitic leucosomes of Yaoundé series (Cameroon): evidence for a unique Pan-African magmatism and melting event in North Equatorial Fold Belt. Int J Geosci 2012:24. https://doi.org/10.4236/ijg.2012.33055

    Article  Google Scholar 

  • Ngnotué, T., Nzenti, J.P., Barbey, P., Tchoua, F.M (2000). The Ntui-Betamba high-grade gneisses : a northward extension of the Pan-African Yaoundé gneisses in Cameroon. ournal of African Earth Sciences 31: 369–381.

  • Njiekak G, Dörr W, Tchouankoué J-P, Zulauf G (2008) U-Pb zircon and microfabric data of (meta) granitoids of western Cameroon: constraints on the timing of pluton emplacement and deformation in the Pan-African belt of central Africa. Lithos 102:460–477. https://doi.org/10.1016/j.lithos.2007.07.020

    Article  Google Scholar 

  • Nkoumbou C, Barbey P, Yonta-Ngouné C et al (2014) Pre-collisional geodynamic context of the southern margin of the Pan-African fold belt in Cameroon. J Afr Earth Sc 99:245–260. https://doi.org/10.1016/j.jafrearsci.2013.10.002

    Article  Google Scholar 

  • Nomo Negue E, Tchameni R, Vanderhaeghe O et al (2017) Structure and LA-ICP-MS zircon U-Pb dating of syntectonic plutons emplaced in the Pan-African Banyo-Tcholliré shear zone (central north Cameroon). J Afr Earth Sc 131:251–271. https://doi.org/10.1016/j.jafrearsci.2017.04.002

    Article  Google Scholar 

  • Nzenti JP (1998) Neoproterozoic alkaline meta-igneous rocks from the Pan-African North Equatorial Fold Bel (Yaounde, Cameroon): biotitites and magnetite rich pyroxenites. J Afr Earth Sc 26:37–47. https://doi.org/10.1016/S0899-5362(97)00135-8

    Article  Google Scholar 

  • Nzenti JP, Barbey P, Jegouzo P, Moreau C (1984) Un nouvel exemple de ceinture granulitique dans une chaîne protérozoïque de collision : les migmatites de Yaoundé au Cameroun. Comptes Rendus De L’académie Des Sciences De Paris 299:1197–1199

    Google Scholar 

  • Nzenti JP, Barbey P, Macaudiere J, Soba D (1988) Origin and evolution of the late Precambrian high-grade Yaounde Gneisses (Cameroon). Precambr Res 38:91–109. https://doi.org/10.1016/0301-9268(88)90086-1

    Article  Google Scholar 

  • Owona S, Schulz B, Ratschbacher L et al (2011) Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites. J Afr Earth Sc 59:125–139

    Article  Google Scholar 

  • Owona S, Tichomirowa M, Ratschbacher L et al (2012) New igneous zircon Pb/Pb and metamorphic Rb/Sr ages in the Yaounde Group (Cameroon, Central Africa): implications for the Central African fold belt evolution close to the Congo Craton. Int J Earth Sci (geol Rundsch) 101:1689–1703. https://doi.org/10.1007/s00531-012-0751-x

    Article  Google Scholar 

  • Penaye J, Toteu SF, Van Schmus WR, Nzenti J-P (1993) U-Pb and Sm-Nd preliminary geochronologic data on the Yaoundé series, Cameroon: re-interpretation of the granulitic rocks as the suture of a collision in the Centrafrican belt. Comptes rendus de l’Académie des sciences Série 2. Mécanique, Physique, Chimie, Sciences De L’univers, Sciences De La Terre 317:789–794

    Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambr Res 51:1–25. https://doi.org/10.1016/0301-9268(91)90092-O

    Article  Google Scholar 

  • Ratajeski K, Sisson TW, Glazner AF (2005) Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust. Contrib Miner Petrol 149:713–734

    Article  Google Scholar 

  • Rossetti F, Lucci F, Theye T, Bouybaouenne M, Gerdes A, Opitz J, Dini A, Lipp C (2020) Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean region. Gondwana Res 83:157–182

    Article  Google Scholar 

  • Rudnick RL (1992) Restites, Eu anomalies and the lower continental crust. Geochim Cosmochim Acta 56:963–970

    Article  Google Scholar 

  • Saki A, Lucci F, Miri M, White JC (2021) Trondhjemite leucosomes generated by partial melting of a hornblende-gabbro (Alvand plutonic complex, Hamedan, NW Iran). International Geololgy Review 1–34.

  • Sawyer EW (2008) Atlas of migmatites: the Canadian Mineralogist Special Publication 9. National Research Press, Ottawa, Canada, p 371p

    Book  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources: contributions to. Mineral Petrol 148:635–661

    Article  Google Scholar 

  • Slagstad T, Jamieson RA, Culshaw NG (2005) Formation, crystallization, and migration of melt in the mid-orogenic crust: Muskoka domain migmatites, Grenville province, Ontario. J Petrol 465:893–919

    Article  Google Scholar 

  • Smith EI, Sanchez A, Walker JD, Wang K (1999) Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small-and large-scale chemical variability of the lithospheric mantle. J Geol 107:433–448

    Article  Google Scholar 

  • Soh Tamehe L, Wei C, Ganno S et al (2021) Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group, SW Cameroon: insights from isotopic, geochemical and geochronological studies of drillcore samples. Geosci Front 12:549–572. https://doi.org/10.1016/j.gsf.2020.07.009

    Article  Google Scholar 

  • Stendal H, Toteu SF, Frei R et al (2006) Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). J Afr Earth Sc 44:443–458. https://doi.org/10.1016/j.jafrearsci.2005.11.012

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

  • Tagne-Kamga G (2003) Petrogenesis of the Neoproterozoic Ngondo plutonic complex (Cameroon, west central Africa): a case of late-collisional ferro-potassic magmatism. J Afr Earth Sc 36:149–171

    Article  Google Scholar 

  • Tchakounté J, Eglinger A, Toteu SF et al (2017) The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon). Precambr Res 299:210–229. https://doi.org/10.1016/j.precamres.2017.07.001

    Article  Google Scholar 

  • Tchameni R, Pouclet A, Penaye J et al (2006) Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. J Afr Earth Sc 44:511–529. https://doi.org/10.1016/j.jafrearsci.2005.11.017

    Article  Google Scholar 

  • Tchameni R, Sun F, Dawaï D et al (2016) Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon). Int J Earth Sci (geol Rundsch) 105:1811–1830. https://doi.org/10.1007/s00531-015-1276-x

    Article  Google Scholar 

  • Theunissen K, Klerkx J, Melnikov A, Mruma A (1996) Mechanisms of inheritance of rift faulting in the western branch of the East African Rift, Tanzania. Tectonics 15:776–790

    Article  Google Scholar 

  • Toteu SF, Penaye J, Deloule E et al (2006) Diachronous evolution of volcano-sedimentary basins north of the Congo craton: insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon). J Afr Earth Sc 44:428–442. https://doi.org/10.1016/j.jafrearsci.2005.11.011

    Article  Google Scholar 

  • Toteu SF, Penaye J, Djomani YP (2004) Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Can J Earth Sci 41:73–85. https://doi.org/10.1139/e03-079

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Michard A (2001) New U/Pb and Sm/Nd data from North-Central Cameroon and its bearing on the pre-pan African history of Central Africa. Precambr Res 108:45–73

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Nyobé JB (1994) U/Pb and Sm/Nd edvidence for Eburnian and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambr Res 67:321–347. https://doi.org/10.1016/0301-9268(94)90014-0

    Article  Google Scholar 

  • Van Schmus WR, Oliveira EP, Filho AF da S et al (2008) Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society, London, Special Publications 294:69–99. https://doi.org/10.1144/SP294.5

    Article  Google Scholar 

  • Vicat J-P, Nsifa E, Tchameni R, Pouclet A (1998) La ceinture de roches vertes de Lolodorf-Ngomedzap (Sud-Cameroun). Pétrologie, Géochimie Et Cadre Géodynamique Géosciences Au Cameroun, Collect GEOCAM 1:325–337

    Google Scholar 

  • Vielzeuf D, and Vidal Ph (eds) (1990) Granulites and crustal differentiation: Kluwer Academic Publishers, Dordrecht, p. 601

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413. https://doi.org/10.1007/s00410-006-0068-5

    Article  Google Scholar 

  • Yonta-Ngoune C, Nkoumbou C, Barbey P et al (2010) Geological context of the Boumnyebel talcschists (Cameroun): inferences on the Pan-African Belt of Central Africa. CR Geosci 342:108–115. https://doi.org/10.1016/j.crte.2009.12.007

    Article  Google Scholar 

  • Zhang S-H, Zhao Y (2017) Cogenetic origin of mafic microgranular enclaves in calc-alkaline granitoids: the Permian plutons in the northern North China Block. Geosphere 13:482–517

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. We are grateful to the staff of the Department of Earth Sciences, University of Yaoundé I, for the assistance during field trip and to Dr Landry Soh Tamehe for their kind assistance during LA-ICP-MS zircon U-Pb dating. The authors are also grateful for thorough and helpful reviews by Prof. Federico Lucci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvestre Ganno.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metang, V., Nomo Negue, E., Ganno, S. et al. Anatexis of metadiorite from the Yaoundé area, Central African Orogenic Belt in Cameroon: implications on the genesis of in-source granodiorite leucosomes. Arab J Geosci 15, 359 (2022). https://doi.org/10.1007/s12517-022-09642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09642-x

Keywords

Navigation