Skip to main content

Advertisement

Log in

Shoreline changes in the river mouths of the Ceyhan Delta

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Formed through natural processes, river deltas are also quite sensitive to changes in natural systems. In addition to this sensitivity, especially in the current time, humans can affect the deltas, either consciously or unconsciously. The Ceyhan Delta, the subject of this study, is being exposed to the impacts of such natural and anthropogenic factors, and as a result, it suffers from coastal erosion. After the flood in 1935, the Ceyhan River changed its riverbed began to discharge toward to the south instead of continuing to discharge eastward through its previous outlet. That event halted the sediment transport to the east part of the delta. Subsequently, the dams considerably reduced the amount of discharged water and transported sediment to the delta. The present study examined the shoreline alterations in the historical and newly created mouths of the Ceyhan River since the date of the oldest available aerial photography. After the analyses for the historical mouth, we observed a retreat in the shoreline that encompassed the whole study period. The average coastal erosion for this historical mouth was 12.05 m/year; however, at the new river mouth, the shoreline first advanced quickly then slowly and then began to retreat. Through the 20-year period of the new river mouth from 1953 to 1973, the new delta lobe was formed at a rate of 19.28 m/year. During 1973–1992, the alterations in the shoreline showed a positive direction at an average rate of 9.81 m/year. The average coastal erosion during 1992–2017 was 2.78 m/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Turkish State Meteorological Service observation records)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alesheikh AA, Ghorbanali A, Nouri N (2007) Coastline change detection using remote sensing. Int J Environ Sci Technol 4(1):61–66

    Article  Google Scholar 

  • Alphan H (2005) Perceptions of coastline changes in river deltas: southeast Mediterranean coast of Turkey. Int J Environ Pollut 23(1):92–102

    Article  Google Scholar 

  • Amenuvor M, Gao W, Li D, Shao D (2020) Effects of dam regulation on the hydrological alteration and morphological evolution of the Volta River Delta. Water 12(3):646. https://doi.org/10.3390/w12030646

    Article  Google Scholar 

  • Anthony EJ, Marriner N, Morhange C (2014) Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: from progradation to destruction phase? Earth Sci Rev 139:336–361

    Article  Google Scholar 

  • Ataol M, Kale MM, Tekkanat İS (2019) Assessment of the changes in shoreline using digital shoreline analysis system: a case study of Kızılırmak Delta in northern Turkey from 1951 to 2017. Environ Earth Sci 78(19):1–9. https://doi.org/10.1007/s10661-019-7535-8

    Article  Google Scholar 

  • Ataol M (2015) A crevasse splay induced avulsion on the Ceyhan Delta. Sosyal Araştırmalar Dergisi 8(41):675–681

    Google Scholar 

  • Awad M, El-Sayed HM (2021) The analysis of shoreline change dynamics and future predictions using automated spatial techniques: case of El-Omayed on the Mediterranean coast of Egypt. Ocean Coast Manag 205:105568

    Article  Google Scholar 

  • Ayadi K, Boutiba M, Sabatier F, Guettouche MS (2016) Detection and analysis of historical variations in the shoreline, using digital aerial photos, satellite images, and topographic surveys DGPS: case of the Bejaia bay (East Algeria). Arab J Geosci 9(1):1–12

    Article  Google Scholar 

  • Bacino GL, Dragani WC, Codignotto JO, Pescio AE, Farenga MO (2020) Shoreline change rates along Samborombón Bay, Río de la Plata estuary. Argentina. Estuar Coast Shelf Sci 237:106659

    Article  Google Scholar 

  • Bougherira A, Ghodbani T, Kouti A (2020) Contemporary geomorphic evolution of Falcon Cape sandy coastline (Oran, Algeria): geographical information system (GIS)-based approach. Arab J Geosci 13(18):1–16

    Article  Google Scholar 

  • Brandt SA (2000) Classification of geomorphological effects downstream of dams. CATENA 40:375–401

    Article  Google Scholar 

  • Davidson MA, Lewis RP, Turner IL (2010) Forecasting seasonal to multi-year shoreline change. Coast Eng 57(6):620–629

    Article  Google Scholar 

  • Davidson SG, Hesp P, da Silva GM (2021) Rapid shoreline erosion and dunefield Change, Salmon Hole South Australia. Sci Total Environ 767:145406

    Article  Google Scholar 

  • DSI (2013) Suspended Sediment Data For Surface Waters In Turkey. General Directorate of State Hydraulic Works Publication, Ankara

    Google Scholar 

  • EIE (Elektrik İşleri Etüd İdaresi Genel Müdürlüğü) (2000) Türkiye Akarsularında Süspanse Sediment Gözlemleri ve Sediment Taşınım Miktarları, Elektrik İşleri Genel Müdürlüğü, Yayın No: 20 – 17, Ankara

  • EIE (Elektrik İşleri Etüd İdaresi Genel Müdürlüğü) (2006) Türkiye Akarsularında Süspanse Sediment Gözlemleri Yıllığı (31.12.2005), Elektrik İşleri Etüd İdaresi Genel Müdürlüğü, Ankara

  • Erinç S (1953) Çukurova’nın alüvyal morfolojisi hakkında. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi 3(4):149–159

    Google Scholar 

  • Erinç S (2012) Jeomorfoloji II. Der Yayınları. Cağaloğlu, İstanbul, p 484

  • Erten AP, Sözen MR (1997) Halep çami (Pinus halepensis Mill.) odunun fiziksel ve mekaniksel özelliklerinin belirlenmesi. Iç Anadolu Ormancilik Araştirma Enstitüsü Müdürlügü, Technical Bulletin No: 268, Ankara

  • Fanos AM (1995) The impact of human activities on the erosion and accretion of the Nile Delta coast. J Coastal Res 11(3):821–833

    Google Scholar 

  • French PW (2001) Coastal defences: processes, problems and solutions. Edmundsbury Press, London

    Google Scholar 

  • Frihy OE (1988) Nile Delta shoreline changes: aerial photographic study of a 28-year period. J Coastal Res 4(4):597–606

    Google Scholar 

  • Frihy OE (1992) Sea-level rise and shoreline retreat of the Nile Delta promontories. Egypt Natural Hazards 5(1):65–81

    Article  Google Scholar 

  • Goudie A (2018) The human impact in geomorphology–50 years of change. Geomorphology 106601. https://doi.org/10.1016/j.geomorph.2018.12.002

  • Hait AK, Behling H (2009) Holocene mangrove and coastal environmental changes in the western Ganga-Brahmaputra Delta, India. Vegetation History and Archaeobotany 18(2):159–169. https://doi.org/10.1007/s00334-008-0203-5

  • Hooke JM (2006) Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79(3–4):311–335

    Article  Google Scholar 

  • Inman DL, Frautschy JD (1965) Littoral processes and the development of shorelines. In Proceedings Coastal Engineering Santa Barbara Specialty Conference (October, 1965). American Society of Civil Engineers, New York

  • Kale MM, Ataol M, Tekkanat İS (2019) Assessment of shoreline alterations using a digital shoreline analysis system: a case study of changes in the Yeşilırmak Delta in northern Turkey from 1953 to 2017. Environ Monit Assess 191(6):398

    Article  Google Scholar 

  • Kılar H, Çiçek İ (2018) Göksu Deltası kıyı çizgisi değişiminin DSAS aracı ile belirlenmesi. Coğrafi Bilimler Dergisi 16(1):89–104

    Article  Google Scholar 

  • Konlechner TM, Kennedy DM, O’Grady JJ, Leach C, Ranasinghe R, Carvalho RC, Luijendijk AP, McInnes KL, Ierodiaconou D (2020) Mapping spatial variability in shoreline change hotspots from satellite data; a case study in southeast Australia. Estuar Coast Shelf Sci 246:107018

    Article  Google Scholar 

  • Kuleli T (2010) Quantitative analysis of shoreline changes at the mediterranean coast in Turkey. Environ Monit Assess 167:387–397

    Article  Google Scholar 

  • Kuleli T, Güneroğlu A, Karslı F, Dihkan M (2011) Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Eng 38(10):1141–1149

    Article  Google Scholar 

  • Louati M, Saïdi H, Zargouni F (2015) Shoreline change assessment using remote sensing and GIS techniques: a case study of the Medjerda delta coast, Tunisia. Arab J Geosci 8:4239–4255

    Article  Google Scholar 

  • Liébault F, Piégay H (2002) Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surf Process Landf 27:425–444

    Article  Google Scholar 

  • Liu Y, Deng B, Du J, Zhang G, Hou L (2019) Nutrient burial and environmental changes in the Yangtze Delta in response to recent river basin human activities. Environ Pollut 249:225–235

    Article  Google Scholar 

  • Maiti S, Bhattacharya AK (2009) Shoreline change analysis and its application to prediction: a remote sensing and statistics based approach. Mar Geol 257:11–23

    Article  Google Scholar 

  • Miliman JD (1980) Transfer of river-borne particulate material to the oceans. In : River Inputs to Ocean Systems . In J. M.Martin, J. D. Burton, & D. Eisma (Eds.). SCORLJNEP UNESCO. Review and workshop (pp. 5–12). Rome: FAO

  • Muskananfola MR, Febrianto S (2020) Spatio-temporal analysis of shoreline change along the coast of Sayung Demak, Indonesia using Digital Shoreline Analysis System. Reg Stud Mar Sci 34:101060

    Article  Google Scholar 

  • Nicolay A, Raab A, Raab T, Rösler H, Bönisch E, Murray AS (2014) Evidence of (pre-) historic to modern landscape and land use history near Jänschwalde (Brandenburg, Germany). Z Geomorph 58(Suppl. 2):7–31

    Article  Google Scholar 

  • Nienhuis JH, Ashton AD, Edmonds DA, Hoitink AJF, Kettner AJ, Rowland JC, Törnqvist TE (2020) Global-scale human impact on delta morphology has led to net land area gain. Nature 577(7791):514–518

    Article  Google Scholar 

  • Özpolat E, Demir T (2019) The spatiotemporal shoreline dynamics of a delta under natural and anthropogenic conditions from 1950 to 2018: a dramatic case from the Eastern Mediterranean. Ocean Coast Manag 180:104910

    Article  Google Scholar 

  • Petts GE (1984) Sedimentation within a regulated river. Earth Surf Proc Land 9:125–134

    Article  Google Scholar 

  • Rosskopf CM, Di Paola G, Atkinson DE, Rodríguez G, Walker IJ (2018) Recent shoreline evolution and beach erosion along the central Adriatic coast of Italy: the case of Molise region. J Coast Conserv 22(5):879–895

    Article  Google Scholar 

  • Russell RJ (1954) Alluvial morphology o f Anatolian rivers. Ann. Assoc. Amer. Geogr., X L IV, 363–391

  • Schwartz ML (2005) Encylopedia of Coastal Science. Springer, Dordrecht. The Netherlands, p 1211p

    Book  Google Scholar 

  • Szmytkiewicz M, Biegowski J, KaczmArek L (2000) Coastline changes nearby harbor structures: one-line models versus field data. Coast Eng 40(2):119–139

    Article  Google Scholar 

  • Safak I, List JH, Warner JC, Kumar N (2017) Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina. Coast Eng 120:78–92

    Article  Google Scholar 

  • Tağıl Ş, Cürebal I (2005) Altınova sahilinde kıyı çizgisi değişimini belirlemede uzaktan algılama ve coğrafi bilgi sistemleri. Fırat Üniversitesi Sosyal Bilimler Dergisi 15(2):51–68

    Google Scholar 

  • Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) The digital shoreline analysis system (DSAS) version 4.0 an ArcGIS extension for calculating shoreline change (no. 2008 – 1278), US Geological Survey

  • Torab M, Azab M (2007) Modern shoreline changes along the Nile Delta coast as an impact of construction of the Aswan High Dam. Geographia Technica 2(2):69–76

    Google Scholar 

  • Trenhaile AS (1997) Coastal Dynamics and Landforms. Clarendon, Oxford

    Google Scholar 

  • Turoğlu H (2009) 3621 Sayılı Kıyı Kanunu ve onun uygulama problemleri. Türk Coğrafya Dergisi 53:31–40

    Google Scholar 

  • Van Binh D, Kantoush S, Sumi T (2020) Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 353. https://doi.org/10.1016/j.geomorph.2019.107011

  • Ve ND, Fan D, Van Vuong B, Lan TD (2021) Sediment budget and morphological change in the Red River Delta under increasing human interferences. Mar Geol 431. https://doi.org/10.1016/j.margeo.2020.106379

  • Williams GP, Wolman MG (1984) Downstream effects of dams on alluvial rivers. U.S. Geological Survey Professional Paper 1286, 1 – 61 (Washington, D.C.)

  • Yarar M, Magnin G (1997) Türkiye'nin Önemli Kuş Alanları. İstanbul: Doğal Hayatı Koruma Derneği

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ataol.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataol, M., Kale, M.M. Shoreline changes in the river mouths of the Ceyhan Delta. Arab J Geosci 15, 201 (2022). https://doi.org/10.1007/s12517-022-09516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09516-2

Keywords

Navigation