Skip to main content

Advertisement

Log in

Provenance, tectonic setting, and source area palaeoweathering of the Lower Cretaceous Nubian sandstones at Gebel Duwi, Eastern Desert, Egypt: inferences from mineralogy and whole-rock geochemistry

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Lower Cretaceous Nubian sandstones cover large areas in both NE Africa and Arabia. In this study, we utilized major and trace element data in combination with petrographic and heavy mineral analyses to infer the provenance model of the Nubian sandstones exposed at Gebel Duwi in the Eastern Desert of Egypt. It is established that these sandstones are mainly quartzose (quartz-arenite) and litho-quartzose deposited in fluvial and estuarine near-shore environments. The quartzose sandstones are dominantly fine to medium-grained in texture. The framework consists mainly of quartz grains (average 92.26% of rock volume), in addition to minor lithic fragments (average 4.6%), very rare feldspars (average 1.17%), and heavy mineral fractions (average 1.8%). The lithic fragments are represented mainly by siltstone and sandy siltstone, with minor lithics of gneisses. The heavy mineral assemblage comprises zircon, tourmaline, rutile (ZTR), garnet, and kyanite, with minor epidote, ilmenite, and leucoxene. Chemically, these sandstones are rich in SiO2 and poor in CaO, MgO, K2O, Na2O, and P2O5. From trace elements, the most abundant are Ba, Th, Zr, and Sr. The provenance-related interpretations of the established rock composition imply that the Nubian sandstones were sourced mainly from a relatively proximal Paleozoic sandstones through multiple stages of fluvial recycling and were deposited in low-lying basin areas in the passive continental margin. The modal composition analysis reflects that these sandstones are mainly of cratonic interior. The ZTR-dominated heavy mineral assemblage indicates an increasing proportion of detritus recycled from older siliciclastic units of Paleozoic age. The high chemical weathering indices indicate intense subaerial weathering in a humid environment and multiple episodes of reworking, with a considerable contribution of basement denudation. A stable tectonic regime is interpreted, and intracratonic activation is not recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abd El-Razik TM (1967) Stratigraphy of the sedimentary cover of the Anz-Atshan-south Duwi district. Bull Fac Sci Cairo University 431:135–179

    Google Scholar 

  • Ahfaf MMA, Adepehin EJ, Che Aziz Ali CA, Jamil H, Sylvester Powei Lubi SP (2021) Controls on the compositional framework and petrogenesis of Early Cretaceous first cycle quartzose sandstone, North Gondwana. Sediment Geol 424:105982

    Article  Google Scholar 

  • Akaad MK, Noweir AM (1980) Geology and lithostratigraphy of the Arabian desert orogenic belt between latitudes 250 35′ and 260 30′. In: Cooray PATS (ed) Evolution and Mineralization of the Arabian-Nubian shield. Permagon Press, New York, pp 127–135

    Chapter  Google Scholar 

  • Akarish AM, El-Gohary AM (2008) Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: implications for provenance and tectonic setting. J Afr Earth Sci 52:43–54

    Article  Google Scholar 

  • Akinlotan OO, Adepehin EJ, Rogers GH, Drumm EC (2021) Provenance, palaeoclimate and palaeoenvironments of a non-marine Lower Cretaceous facies: petrographic evidence from the Wealden Succession. Sediment Geol 415:105848

    Article  Google Scholar 

  • Al-Habri OA, Khan MM (2008) Provenance, diagenesis, tectonic setting and geochemistry of Tawil sandstone (Lower Devonian in central Saudi Arabia). J Asia Earth Sci 33:278–287

    Article  Google Scholar 

  • Amireh BS (1991) Mineral composition of the Cambrian-Cretaceous Nubian series of Jordan: provenance, tectonic setting and climatological implications. Sediment Geol 71:99–119

    Article  Google Scholar 

  • An K, Chen H, Lin X, Wang F, Yang S, Wen Z, Wang Z, Zhang G, Tong X (2017) Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level. Front Earth Sci 11:740–750

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee YI, Balaram V, Cruz-Martinez A, Avila-Ramirez G (2013) Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source area weathering, provenance, and tectonic setting. C R Geosci 345:185–202

    Article  Google Scholar 

  • Basu A, Young S, Suttner L, James W, Mack G (1975) Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation. J Sediment Petrol 45:873–882

    Google Scholar 

  • Beauchamp J, Omer MK, Perriaux J (1990) Provence and dispersal of Cretaceous elastics in northeastern Africa: climatic and structural setting. J Afr Earth Sci 10:243–251

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bhatia MR, Crook KW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bracciali L, Marroni M, Pandolfi L, Rocchi S (2007) Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. In: Arribas J, Critelli S, Johnsson MJ (Eds.), Sedimentary provenance and petrogenesis: perspectives from petrography and geochemistry. vol. 420. The Geological Society of America, Special Paper, pp 73–93

  • Crook KAW (1974) Lithostratigraphy and geotectonic: the significance of composition variation in flyscharenites (graywakes). In: Dott RH, Shaver RH (Eds.), Modern and Ancient Geosynclinal Sedimentation. vol.  19. Society of Economic Palaeontologists and Mineralogists, special publication, pp 304–310

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, U.S.A.: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Cullers R, Basu A, Suttner LJ (1988) Geochemical signature of provenance in sand-sized material in soil and stream sediments near the Tobacco Root Batholith, Montana, USA. Chem Geol 70:335–348

    Article  Google Scholar 

  • Dabbagh ME, Rogers JJ (1983) Depositional environments and tectonic significance of the Wajid Sandstone of southern Saudi Arabia. J Afr Earth Sci 1:47–57

    Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Am Assoc Pet Geol 63:2164–2182

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  • Dinis PA, Garzanti E, Hahn A, Vermeesch P, Cabral-Pinto M (2020) Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth Sci Rev 201:103039

    Article  Google Scholar 

  • Floyd PA, Franke W, Shail R, Dorr W (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Res 45:203–214

    Article  Google Scholar 

  • Folk RL (1974) Petrology of Sedimentary Rocks: Austin. Hemphill, Texas, p 182

  • Garcia D, Coelho J, Perrin M (1991) Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). Eur J Mineral 3:401–414

    Article  Google Scholar 

  • Garfunkel Z (1999) History and paleogeography during the Pan-African orogen to stable platform transition: reappraisal of the evidence from Elat area and the northern Arabian-Nubian Shield. Isr J Earth Sci 48:135–157

    Google Scholar 

  • Garfunkel Z (2002) Early Palaeozoic sediments of NE Africa and Arabia: products of continental-scale erosion, sediment transport, and deposition. Isr J Earth Sci 51:135–156

    Article  Google Scholar 

  • Garver JI, Royce PR, Smick TA (1996) Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sediment Res 66:100–106

    Google Scholar 

  • Garzanti E (2016) From static to dynamic provenance analysis-sedimentary petrology upgraded. Sediment Geol 336:3–13

    Article  Google Scholar 

  • Garzanti E (2019) Petrographic classification of sand and sandstone. Earth Sci Rev 192:545–563

    Article  Google Scholar 

  • Garzanti E, Andò S (2019) Heavy minerals for junior woodchucks. Minerals 9:148

    Article  Google Scholar 

  • Garzanti E, Dinis P, Vermeesch P, Ando S, Hahn A, Huvi J, Limonta M, Padoan M, Resentini A, Rittner M, Vezzoli G (2018) Dynamic uplift, recycling, and climate control on the petrology of passive-margin sand (Angola). Sediment Geol 375:86–104

    Article  Google Scholar 

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273

    Article  Google Scholar 

  • Guiraud R, Issawi B, Bosworth W (2001) Phanerozoic history of Egypt and surrounding areas. In: Ziegler PA, Cavazza W, Robertson AHF, Crasqun-Soleau S (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. vol. 186. Mém. Mus. natn. Hist. nat., pp 469–509

  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 43:83–143

    Article  Google Scholar 

  • Hamimi Z, El-Barkooky A, Martinez Frias J, Fritz H, El-Rahman Y (2020) The Geology of Egypt. Springer, Cham, p 711

    Book  Google Scholar 

  • Harnois L (1988) The CIW index: a new chemical index of weathering. Sediment Geol 55:319–322

    Article  Google Scholar 

  • Haughton PDW, Todd SP, Morton AC (1991) Sedimentary provenance studies. In: Geological Society, 57th edn. Special Publication, London, pp 1–11

    Google Scholar 

  • Hayashi K, Fujisawa H, Holland H, Ohmoto H (1997) Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 61:4115–4137

    Article  Google Scholar 

  • He J, Wang H, Garzanti E (2020) Petrographic analysis and classification of sand and sandstone. Earth Sci - J China Univ Geosci 45:2186–2198

    Google Scholar 

  • Heath R, Vanstone S, Swallow J, Ayyad M, Amin M, Huggins P, Swift R, Warburton I, McClay K, Younnis A (1999) Renewed exploration in the offshore north Red Sea Region, Egypt. In: Proceedings of the 14th Petroleum Conference. Egyptian General Petroleum Corporation, Cairo, pp 16–34

    Google Scholar 

  • Hindrix MS (2000) Evaluation of Mesozoic sandstone composition, southern Junggar, northern Tarim and western Turran basins, northwest China: a detrital record of the ancestral Tian Shan. J Sediment Res 70:520–532

    Article  Google Scholar 

  • Hiscott R (1984) Ophiolitic source rocks for Taconic-Age flysch: trace-element evidence. Geol Soc Am Bull 95:1261–1267

    Article  Google Scholar 

  • Ingersoll RV, Suczek CA (1979) Petrology and provenance of Neogene sand from Nicobarand Bengal fans, DSDP sites 211 and 218. J Sediment Petrol 49:1217–1228

    Google Scholar 

  • Ingersoll RV, Bullard T, Ford R, Grimm J, Pickle J, Sares S (1984) The effect of grain size on detrital modes: a test of the Gazzi Dickinson point-counting method. J Sediment Petrol 54:103–116

    Google Scholar 

  • Issawi B, Sallam ES (2018) Stratigraphy and facies development of the pre-Cenozoic sediments in southern Egypt: a geodynamic approach. Arab J Geosci 11:271

    Article  Google Scholar 

  • Issawi B, Ahmed SM, Osman R, Sallam ES (2005) Studies on the Pliocene—Quaternary sediments in the western fringes of the Nile Delta—lower Nile Valley stretch, Egypt. Sedimentology Egypt 13:277–296

    Google Scholar 

  • Issawi B, Sallam E, Zaki SR (2016) Lithostratigraphic and sedimentary evolution of the Kom Ombo (Garara) sub-basin, southern Egypt. Arab J Geosci 9:420

    Article  Google Scholar 

  • Khalil SM, McClay KR (2009) Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt. Mar Pet Geol 26:1018–1034

    Article  Google Scholar 

  • Klitzsch E (1981) Lower Palaeozoic rocks of Libya, Egypt and Sudan. In: Holland CH (ed) Lower Palaeozoic Rocks of the Middle East, Eastern and Southern Africa and Antarctica. Wiley, London, pp 131–163

    Google Scholar 

  • Klitzsch E (1990) Paleogeographical development and correlation of Continental Strata (former Nubian Sandstone) in northeast Africa. J Afr Earth Sci 10:199–213

    Article  Google Scholar 

  • Kolodner K, Avigad D, Mcwilliams M, Wooden JL, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143:367–391

    Article  Google Scholar 

  • Kolodner K, Avigad D, Ireland TR, Garfunkel Z (2009) Origin of Lower Cretaceous (‘Nubian’) sandstones of North-east Africa and Arabia from detrital zircon U-Pb SHRIMP dating. Sedimentology 56:2010–2023

    Article  Google Scholar 

  • Kröner A (1984) Late Precambrian plate tectonics and orogeny: a need to redefine the term Pan-African. In: Klerkx J, Michot J (eds) African Geology. Musée. R. l’Afrique Centrale, Tervuren, pp 23–28

    Google Scholar 

  • Kröner A (1993) The Pan African belt of northeastern and Eastern Africa, Madagascar, southern India, Sri Lanka and East Antarctica: terrane amalgamation during the formation of the Gondwana supercontinent. In: Thorweihe U, Schandelmeier H (eds) Geoscientific Research in Northeast Africa. Balkema, Rotterdam, pp 3–9

    Google Scholar 

  • Kroonenberg SB (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. Proceedings of the 29th International Geological Congress, Part A, pp 69–81

  • Löwen K, Meinhold G, Güngör T (2018) Provenance and tectonic setting of Carboniferous–Triassic sandstones from the Karaburun Peninsula, western Turkey: a multi-method approach with implications for the Palaeotethys evolution. Sediment Geol 375:232–255

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson MJ, Basu A (eds) Processes Controlling the Composition of Clastic Sediments, vol 284. The Geological Society of America, Special Paper, Boulder, pp 21–40

    Chapter  Google Scholar 

  • Miall AD (1988) Facies architecture in clastic sedimentary basins. In: Kleinspehn KL, Paola C (eds) New Perspectives in Basin Analysis. Springer-Verlag, New York, pp 67–81

    Chapter  Google Scholar 

  • Middelburg JJ, van der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  • Mohammedyasin MS, Wudie G (2019) Provenance of the Cretaceous Debre Libanos Sandstone in the Blue Nile Basin, Ethiopia: Evidence from petrography and geochemistry. Sediment Geol 379:46–59

    Article  Google Scholar 

  • Morton AC (1985) Heavy minerals in provenance studies. In: Zuffa GG (ed) Provenance of Arenite. Reidel, Dordrecht

    Google Scholar 

  • Morton AC, Hallsworth C (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment Geol 90:241–256

    Article  Google Scholar 

  • Nesbitt HW, Markovics G (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta 44:1659–1666

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104:525–542

    Article  Google Scholar 

  • Orszag-Sperber F, Purser BH, Rioual M, Plaziat JC (1998) Post Miocene sedimentation and rift dynamics in the southern Gulf of Suez and northern Red Sea. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 427–447

    Chapter  Google Scholar 

  • Osae S, Asiedu DK, Yakubo B, Koeberl C, Dampare SB (2006) Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: evidence from geochemistry and detrital modes. J Afr Earth Sci 44:85–96

    Article  Google Scholar 

  • Osman R, Ahmed SM, Khater T (2003) The stratigraphy and facies of Wadi Gabgaba and its surroundings with an emphasis on the Lower Paleozoic glaciation. Sixth International Conference of the Arab World, Cairo Univ. Egypt 2:469–482

    Google Scholar 

  • Osman R, Ahmed SM, Khater T (2005) Geological development of Wadi Gabgaba, Eastern Desert. Egypt. First International Conference on the Geology of Tethys, Cairo University 2:465–476

    Google Scholar 

  • Philobbos ER, El Haddad AA, Luger P, Bekir R, Mahran T (1993) Syn-rift Miocene sedimentation around fault blocks in the Abu Ghusun-Wadi el Gemal area, Red Sea, Egypt. In: Philobbos ER, Purser BH (Eds.), Geodynamics and Sedimentation of the Red Sea-Gulf of Aden Rift System. vol. 1. The Geological Society of Egypt, Special Publication, pp 115–142

  • Potter PE (1978) Petrology and chemistry of modern Big River sands. J Geol 86:423–449

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signature of sandstone-mudstone suite determined using discriminant function analysis of major element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Ruban DA, Sallam ES, Wanas HA (2019) Middle–Late Jurassic sedimentation and sea-level changes on the northeast African margin: a case study in the Khashm El-Galala area, NE Egypt. J Afr Earth Sci 156:189–202

    Article  Google Scholar 

  • Ruban DA, Sallam ES, Khater TM, Ermolaev VA (2021) Golden triangle geosites: preliminary geoheritage assessment in a geologically rich area of Eastern Egypt. Geoheritage 13(3):54

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (Eds.), Treatise on Geochemistry. vol. 3. Elsevier-Pergamon, Oxford, pp. 1–64

  • Said R (1962) The geology of Egypt. Elsevier, Amsterdam and New York, p 377

    Google Scholar 

  • Said R (1990) The geology of Egypt. Balkema, Rotterdam, p 734

    Google Scholar 

  • Said R (2017) The geology of Egypt. Routledge, London, p 734

    Book  Google Scholar 

  • Sallam ES, Ruban DA (2020) Facies analysis and depositional environments of the Miocene syn-rift carbonate–siliciclastic rock packages in the northwest Gulf of Suez, Egypt. Carbonates Evaporites 35:10

    Article  Google Scholar 

  • Sallam ES, Wanas HA (2019) Petrography and geochemistry of the Jurassic siliciclastic rocks in the Khashm El-Galala area (NW Gulf of Suez, Egypt): implication for provenance, tectonic setting and source area paleoweathering. J Afr Earth Sci 160:103607

    Article  Google Scholar 

  • Sallam E, Wanas HA, Osman R (2015) Stratigraphy, facies analysis and sequence stratigraphy of the Eocene succession in the Shabrawet area (north Eastern Desert, Egypt): an example for a tectonically influenced inner ramp carbonate platform. Arab J Geosci 8(12):10433–10458

    Article  Google Scholar 

  • Sallam ES, Issawi B, Osman R, Ruban DA (2018) Deposition in a changing paleogulf: evidence from the Pliocene–Quaternary sedimentary succession of the Nile Delta, Egypt. Arab J Geosci 11:558

    Article  Google Scholar 

  • Selim SS (2017) Facies and sequence stratigraphy of fluvio-lacustrine deposits: Cretaceous Nubian succession of the Saharan platform (SW Egypt). Proc Geol Assoc 128:271–286

    Article  Google Scholar 

  • Shawa MS, Issawi B (1978) Depositional environments of the Nubia Sandstone, Upper Egypt. Ann Geol Surv Egypt 8:255–274

    Google Scholar 

  • Stern RJ (1981) Petrogenesis and tectonic setting of Late Precambrian ensimatic volcanic rocks, Central Eastern Desert of Egypt. Precambrian Res 16:195–230

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Stoeser DB, Camp VE (1985) Pan African microplate accretion of the Arabian shield. Geol Soc Am Bull 96:817–826

    Article  Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate I. Framework mineralogy. J Sediment Res 56:329–345

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Science Publisher, Oxford, p 312

    Google Scholar 

  • Tortosa A, Palomares M, Arribas J (1991) Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. In: Morton AC, Todd SP, Haughton PDW (Eds.), Developments in Sedimentary Provenance Studies. vol. 57. Geological Society of London, Special Publication, pp. 47–54

  • Van Houten FB, Bhattacharyya DP, Mansour SEJ (1984) Cretaceous Nubia Formation and correlative deposits, eastern Egypt: major regressive-transgressive complex. Geol Soc Am Bull 95:397–405

    Article  Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355:117–133

    Article  Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2016) Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sediment Geol 332:1–12

    Article  Google Scholar 

  • Wanas HA, Abdel-Maguid NM (2006) Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone, southwest Saudi Arabia: implications for provenance and tectonic setting. J Asian Earth Sci 27:416–429

    Article  Google Scholar 

  • Wanas HA, Assal E (2021) Provenance, tectonic setting and source area-paleoweathering of sandstones of the Bahariya Formation in the Bahariya Oasis, Egypt: an implication to paleoclimate and paleogeography of the southern Neo-Tethys region during Early Cenomanian. Sediment Geol 413:105822

    Article  Google Scholar 

  • Wanas HA, Sallam E, Zobaa MK, Li X (2015) Mid-Eocene alluvial-lacustrine succession at Gebel El-Goza El-Hamra (Shabrawet area, NE Eastern Desert, Egypt): facies analysis, sequence stratigraphy and paleoclimatic implications. Sediment Geol 329:115–129

    Article  Google Scholar 

  • Ward WC, McDonald KC (1979) Nubia Formation of central Eastern Desert, Egypt – major subdivisions and depositional setting. Bull Am Assoc Pet Geol 63:975–983

    Google Scholar 

  • Ward WC, McDonald KC, Mansour SEI (1979) The Nubia Formation of the Qusier – Safaga area, Egypt. Ann Geol Surv Egypt 9:420–431

    Google Scholar 

  • Weissbrod T, Nachmias Y (1986) Stratigraphic significance of heavy minerals in the Late Precambrian-Mesozoic clastic sequence (Nubian Sandstone) in the near East. Sediment Geol 47:263–291

    Article  Google Scholar 

  • Youssef MI (1957) Upper Cretaceous rocks in Kosseir area. Bull de l’Inst du Desert d’Egypt 7:35–53

    Google Scholar 

  • Zaid SM (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. J Afr Earth Sci 66-67:56–71

    Article  Google Scholar 

  • Zaid SM, Elbadry O, Ramadan F, Mohamed M (2015) Petrography and geochemistry of Pharaonic sandstone monuments in Tall San Al Hagr, Al Sharqiya Governorate, Egypt: implications for provenance and tectonic setting. Turk J Earth Sci 24:344–364

    Article  Google Scholar 

  • Zhang L, Sun M, Wang S, Yu X (1998) The composition of shales from the Ordos basin, China: effects of source weathering and diagenesis. Sediment Geol 116:129–141

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the journal editor and the reviewer for their helpful suggestions and M. Mogahed (Benha University, Egypt) for his help in drawing plot diagrams.

Author information

Authors and Affiliations

Authors

Contributions

Field investigations, laboratory analysis, and data acquisition were performed by E.S. Sallam. Data interpretation and discussion have been written by E.S. Sallam and D.A. Ruban.

Corresponding author

Correspondence to Emad S. Sallam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Attila Ciner

Supplementary information

Fig. S-1

Microscopic images showing some of the heavy minerals identified from the studied Nubian sandstone samples (JPG 9875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallam, E.S., Ruban, D.A. Provenance, tectonic setting, and source area palaeoweathering of the Lower Cretaceous Nubian sandstones at Gebel Duwi, Eastern Desert, Egypt: inferences from mineralogy and whole-rock geochemistry. Arab J Geosci 14, 2400 (2021). https://doi.org/10.1007/s12517-021-08743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08743-3

Keywords

Navigation