Skip to main content

Advertisement

Log in

Techniques for ground-based soil moisture measurement: a detailed overview

  • Review Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A vital natural ecosystem balance including seed sprouting, plant nutrition and growth, water infiltration, plant transpiration, redistribution, evaporation, and percolation relies on paramount property of soil moisture. Understanding soil moisture measurement and its pattern is crucial for various important fields such as meteorology, hydrology, agriculture, weather, and climate studies. In recent decades, a significant number of experimental methods have been developed to measure the soil moisture. This review paper aims to outline the available common techniques divided in gravimetric, volumetric, and potentiometric either in direct or indirect method for measuring soil moisture; discuss the basic principle for each technique; and compare and evaluate the available technique on the basis of common parameters such as advantages, limitations, and response time. This paper represents a viable resource particularly for the researchers and personnel responsible to manage natural resource and agriculturist to understand and select the suitable method for soil moisture estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelfattah AH, Sabirov RF, Ivanov BL, Lushnov MA, Sabirov RA (2020) Calibration of soil humidity sensors of automatic irrigation controller. In BIO Web of Conferences (Vol. 00249, pp. 1–5). https://doi.org/10.1051/bioconf/20201700249

  • Abdullah NH, Kuan NW, Ibrahim A, Ismail BN, Majid MR, Ramli R, Mansor NS (2020a) Determination of soil water content using time domain reflectometer (TDR) for clayey soil determination of soil water content using time domain reflectometer (TDR) for clayey soil. Adv Civ Eng Sci Technolo 020016(October 2018):1–7

    Google Scholar 

  • Abdullah NHH, Kuan NW, Ibrahim A, Ismail BN, Majid MR ., Ramli R, Mansor NS (2020b) Determination of soil water content using time domain reflectometer (TDR) for clayey soil determination of soil water content using time domain reflectometer (TDR) for clayey soil. In AIP Conference Proceedings Vol. 020016, pp. 1–6 2020

  • Abeykoon T, Udukumburage R, Gallage C (2017) Comparison of direct and indirect measured soil-water characteristic curves for a silty sand. Inte J Geomate 13(39):9–16. https://doi.org/10.21660/2017.39.170519

    Article  Google Scholar 

  • Abu-Hamdeh NH (2003) Thermal properties of soils as affected by density and water content. Biosyst Eng 86(1):97–102. https://doi.org/10.1016/S1537-5110(03)00112-0

    Article  Google Scholar 

  • Adla S, Rai NK, Karumanchi SH, Tripathi S, Disse M, Pande S (2020) Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors 20(363):1–27. https://doi.org/10.3390/s20020363

    Article  Google Scholar 

  • Ahn JY, Kil DY, Kong C, Kim BG (2014) Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian Australas. J Anim Sci 27(11):1615–1622

    Google Scholar 

  • Ajami H (2021) Geohydrology: global hydrological cycle. In: Alderton D, Elias SA (eds) Encylopedia of geology, 2nd edn. Academic Press, Cambridge, pp 393–398. https://doi.org/10.1016/B978-0-12-409548-9.12387-5

  • Ajayi NO, Abajingin DD, Adegbuyi O, Olowomofe OH (2015) Soil moisture and its effect on gamma radiation level at the air-ground interface. Eur J Basic Appl Sci 2(2):72–77

    Google Scholar 

  • Ajayi A, Eleta PO, Duweni EC, Ehiomogue P (2019) Fabrication and testing of gypsum blocks for soil moisture determination. J Natl Sci Res 9(3):67–74. https://doi.org/10.7176/JNSR

    Article  Google Scholar 

  • Ali MH (2010) Fundamentals of Irrigation and On-farm Water Management (1st ed.). Springer. pp. 1–556. https://doi.org/10.1007/978-1-4419-6335-2

  • Aljohani MS (2013) Electrical capacitance volume tomography (ECVT) for industrial and medical applications-an overview. J Adv Phys 11(1):2897–2908

    Article  Google Scholar 

  • Allen RG (1999) Instructions for attaching soil water resistance blocks to the Onset Hobo H-08 4-Channel External Soil Moisture Logger (or the single channel data Hobo logger). University ofIdaho. https://www.kimberly.uidaho.edu/water/swm/WM_Hobo2.htm. Accessed 30 Jan 2021

  • Allman M, Jankovský M, Allmanová Z, Messingerová V (2015) Comparison of the gravimetric sampling and impedance methods for measuring soil moisture content. Metsanduslikud Uurimused 62:14–25. https://doi.org/10.1515/fsmu-2015-0002

    Article  Google Scholar 

  • Alvarado RJ, Hansen P, Wendt W (2002) Oilfield review summer 2003 - nuclear magnetic resonance logging while drilling. Oilfield Rev 15(32):3–10

    Google Scholar 

  • Álvarezlm M, Ruberto LAM, Balboa L, Cormackwp M (2017) Bioremediation of hydrocarbon-contaminated soils in cold regions : development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Sci Total Environ 15:1–10. https://doi.org/10.1016/j.scitotenv.2017.02.204

    Article  Google Scholar 

  • Amano Y (2018) Addressing climate change with the help of nuclear science. IAEA Bulletin (Online) 59(3):1. Retrieved from https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull59-3/5930101_zt.pdf

  • Anderson SK (2003) Absolute-Reading Soil Moisture and Conductivity Sensor. United States Technical Development Consultants, Inc. (Meridian, ID) 6657443. Retrieved from https://patents.google.com/patent/US6657443B2/en#patentCitations

  • Andreasen M, Jensen KH, Desilets D, Franz TE, Zreda M, Bogena HR (2017) Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J 16(8):1–11. https://doi.org/10.2136/vzj2017.04.0086

    Article  Google Scholar 

  • Anto S, Aii HAW, Ral AGRI, Ersity UNIV (1977) Soil bulk density and water content measurements by gamma-ray attenuation techniques. Tech Bull 98:1–20

    Google Scholar 

  • Arkhangelskaya T, Lukyashchenko K, Velichenko M (2015) Soil thermal diffusivity as related to water content, texture, bulk density and organic carbon. In EGU General Assembly Conference (p. 4795). Retrieved from https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.4795A

  • Atanasov, S. (2015). Soil specific FDR sensor calibration in soil moisture measuring. In, Vol. 54 University of Ruse “Angel Kanchev”, pp. 217–221

  • Baatz R, Bogena HR, Franssen HH, Huisman JA, Qu W, Montzka C, Vereecken H (2014) Calibration of a catchment scale cosmic-ray probe network: a comparison of three parameterization methods. J Hydrol 516:1–14. https://doi.org/10.1016/j.jhydrol.2014.02.026

    Article  Google Scholar 

  • Baatz R, Bogena HR, Franssen HJH, Huisman JA, Montzka C, Vereecken H (2015) An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resour Res 51:2030–2046. https://doi.org/10.1002/2014WR016443.Received

    Article  Google Scholar 

  • Badura M, Batog P, Drzeniecka A, Piotr O (2019) Regression methods in the calibration of low - cost sensors for ambient particulate matter measurements. SN Appl Sci 1(6):1–11. https://doi.org/10.1007/s42452-019-0630-1

    Article  Google Scholar 

  • Bakker WH, Grabmaier KA, Huurneman GC, Meer FD van der, Prakash A, Tempfli K, … Woldai T (2004) Principles of Remote Sensing

  • Balaghi S, Eh NG, Mohammadi A, Carrillo HRV (2018) A neutron scattering soil moisture measurement system with a linear response. Appl Radiat Isotop :1–18. https://doi.org/10.1016/j.apradiso.2018.10.002

  • Baldoncini M, Albéri M, Bottardi C, Chiarelli E, Cristina G, Strati V, Mantovani F (2019) Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy. Geoderma 335:69–77

    Article  Google Scholar 

  • Balendonck J, Hilhorst MA (2001) Application of an intelligent dielectric sensor for soil water content , electrical conductivity and temperature. In Proceedings of the 18th IEEE, pp. 1817–1822)

  • Bao J, Hou Z, Ray J, Huang M, Swiler L Ren H (2018) Soil moisture estimation using tomographic ground penetrating radar in a MCMC – Bayesian framework. Stoch Environ Res Risk Assess 8. https://doi.org/10.1007/s00477-018-1571-8

  • Barber H (2002) Electrical instrumentation. In Plant Engineer’s Reference Book, pp. 1–12

  • Baroni G, Scheiffele LM, Schrön M, Ingwersen J, Oswald SE (2018) Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing. J Hydrol 564:873–887. https://doi.org/10.1016/j.jhydrol.2018.07.053

    Article  Google Scholar 

  • Barrie, P. J. (2000). Characterization of porous media using NMR methods, 265–308.

  • Bauckholt M, Pohle M, Schrön M, Zacharias S, Landmark S, Kathage S, … Werban U (2020) Evaluation of NMR and other soil water content measurement methods at the point and field scale. In EGU General Assembly Conference Abstracts, p. 9522

  • Baumhardt RL, Lascano RJ, Evett S (2000) Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes. Soil Sci Soc Am J 64(November):1940–1946. https://doi.org/10.2136/sssaj2000.6461940×

    Article  Google Scholar 

  • Bavel GHMVAN, Underwood N, Ragar SR (1957) Transmission of gamma radiation by soils and soil densitometry. Soil Sci Soc Am J:1–4

  • Beamex (2009) Why Calibrate? What is the risk of not calibrating? [Online], 1–40

  • Belcher DJ, Cuykendall TR, Sack HS (1950) Technical development report, US. Civ Aeronaut Adm 127:1950

    Google Scholar 

  • Benzinger B, Jawerth N (2018) Using Cosmic Rays to Measure Moisture Levels in Soil. IAEA Bulletin. URL: from https://www.iaea.org/newscenter/news/using-cosmic-rays-to-measure-moisture-levels-in-soil. Accessed 20 Jan 2021

  • Berhe AA (2019) Drivers of soil change. Dev Soil Sci 36:27–42. https://doi.org/10.1016/B978-0-444-63998-1.00003-3

    Article  Google Scholar 

  • Bernadete M, França DM, Morais FJO, Carvalhaes-dias P, Duarte LC, Dias JAS (2018) A multiprobe heat pulse sensor for soil moisture measurement based on PCB technology. IEEE Trans Instrum Meas 68(2):606–613. https://doi.org/10.1109/TIM.2018.2843605

    Article  Google Scholar 

  • Bernhard RK, Chasek M (1955) Soil Density Determination By Direct Transmission of Gamma Rays. In ASTM Proc (Vol. 55, pp. 1199–1215).

  • Bilskie J (2001) Soil water status: content and potential. Campbell Sci Inc 1784(435):84321

    Google Scholar 

  • Biswas A, Si BC (2011) Depth persistence of the spatial pattern of soil water storage in a Hummocky landscape. Soil Sci Soc Am J 75(May 2014):1099–1109. https://doi.org/10.2136/sssaj2010.0131

    Article  Google Scholar 

  • Bittelli M (2011) Measuring soil water content: a review. HortTechnology 21(3):293–300

    Article  Google Scholar 

  • Blonquist JM Jr, Jones SB, Robinson DA (2005) A time domain transmission sensor with TDR performance characteristics. J Hydrol 314:235–245. https://doi.org/10.1016/j.jhydrol.2005.04.005

    Article  Google Scholar 

  • Bogena HR, Huisman JA, Baatz R, Franssen HH, Vereecken H (2013) Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: the worst case scenario. Water Resour Res 49(April):5778–5791. https://doi.org/10.1002/wrcr.20463

    Article  Google Scholar 

  • Bogena HR, Huisman JA, Schilling B, Weuthen A, Vereecken H (2017) Effective calibration of low-cost soil water content sensors. Sensors 17(208):1–12. https://doi.org/10.3390/s17010208

    Article  Google Scholar 

  • Böhme B, Becker M, Diekkrüger B (2013) Calibrating a FDR sensor for soil moisture monitoring in a wetland in Central Kenya. Phys Chem Earth 66:101–111. https://doi.org/10.1016/j.pce.2013.09.004

    Article  Google Scholar 

  • Bouyoucos GJ, Mick AH (1947) Improvements in the plaster of Paris absorption block electrical resistance method for measuring soil moisture under field conditions. Soil Sci 63(6):455–466

    Article  Google Scholar 

  • Brasil. Ministério da Agricultura. Departamento Nacional de Produçăo Vegetal. Regras para análise de sementes. Brasília, 1976. 188p.

  • Bronstert A, Creutzfeldt B, Graeff T, Erwin R, Kneis D, Lu E (2012) Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments. Nat Hazards 60:879–914. https://doi.org/10.1007/s11069-011-9874-9

    Article  Google Scholar 

  • Brown RW, Oosterhuis DM (1992) Measuring plant and soil water potentials with thermocouple psychrometers: some concerns. Agron J 86(1):78–86

    Article  Google Scholar 

  • Burton L, Jayachandran K, Bhansali S (2020) Review—the “real-time” revolution for in situ soil nutrient sensing. J Electrochem Soc 167(037569):1–8. https://doi.org/10.1149/1945-7111/ab6f5d

    Article  Google Scholar 

  • Campanella RG, Mitchell JK (1968) Influence of temperature variations on soil behaviour. J Soil Mech Found Div 94(SM3):709–734

    Article  Google Scholar 

  • Campbell G (1979) Improved thermocouple psychrometers for measurement of soil water potential in a temperature gradient. J Phys E Sci Instrum 12(8):739

    Article  Google Scholar 

  • Campbell GS (1988) Soil water potential measurement: an overview. Irrig Sci 9(4):265–273

    Article  Google Scholar 

  • Campbell GS, Gee GW (1986) Water Potential: Miscellaneous Methods. In A. Klute (Ed.), Soil Science Society of America Book Series (2nd ed., Vol. 9, pp. 619–633). https://doi.org/10.2136/sssabookser5.1.2ed.c25

  • Campbell Scientific (2009) 229 Heat Dissipation Matric Water Potential Sensor. Campbell Scientifi, Inc. (Online), Retrieved from https://www.campbellsci.com/229-l

  • Campora M, Palla A, Gnecco I (2020) The laboratory calibration of a soil moisture capacitance probe in sandy soils. Soil Water Res 2020(2):75–84

    Article  Google Scholar 

  • Carneiro JS, Nogueira RM, Martins MA (2018) The oven-drying method for determination of water content in Brazil nut. Biosci J 34(3):595–602. https://doi.org/10.14393/BJ-v34n3a2018-37726

    Article  Google Scholar 

  • Casanova JJ, Schwartz – Evett R, Baumhardt RL (2012) Soil Permittivity response to bulk electrical conductivity for selected soil water sensors. Vadose Zone J :1–13. https://doi.org/10.2136/vzj2012.0133

  • Cassanova F, Perlo J, Blümich B (2011) Single-sided NMR. Springer, Berlin

  • Cassel DK, Klute A (1986) Water potential: Tensiometery. In A. Klute (Ed.), Methods of soil analysis, Part 1. Physical and mineralological methods (2nd ed., pp. 563–596). American Society of Agronomy, Inc. Soil Science Society of America, Inc. https://doi.org/10.2136/sssabookser5.1.2ed.c23

  • Cassel DK, Krueger TH (1972) Gamma Rays Determine Soil Water Content o f Soil-Plant Systems. N Dak Farm Res 29(4):3–7. Retrieved from https://core.ac.uk/download/pdf/211312074.pdf

  • Chanasyk DS, Naeth MA (1996) Field measurement of soil moisture using neutron probes. Can J Soil Sci 76(3):317–323

    Article  Google Scholar 

  • Chen R, Chen W, Chen Y (2009) TDR measurement system and the application of TDR in geoenvironmental engineering. In Proc. of Int. Symp. on Geoenvironmental Eng., ISGE2009, pp. 153–162

  • Chung C, Lin C (2014) Apparent dielectric constant and effective frequency of TDR measurements: influencing factors and comparison. Vadose Zone J 8(August 2009):548–556. https://doi.org/10.2136/vzj2008.0089

    Article  Google Scholar 

  • Cobos DR, Chamber C (2010) Calibrating ECH2O soil moisture sensors. Application Note 13393-04. Decagon Devices, Pullman

  • Cohen JM, Civitello DJ, Brace AJ, Feichtinger EM, Ortega CN (2016) Spatial scale modulates the strength of ecological processes driving disease distributions. Pnas:3359–3364. https://doi.org/10.1073/pnas.1521657113

  • Cooper JD (2016) Soil water measurement. WILEY Blackwell, Wallingford

  • Cosenza P (2016) Indirect determination of soil water content. E-UNSAT 04004(9):1–6

    Google Scholar 

  • Crow WT, Berg AA, Cosh MH, Loew A, Mohanty BP, Panciera R et al (2014) Upscaling sparse ground-based soil moisture observations for the validation of coarse-resoultion satellite soil moisture products. Geophysics 2011:1–20. https://doi.org/10.1029/2011RG000372.1.INTRODUCTION

    Article  Google Scholar 

  • Cruz MTDL, Casermeiro MA (2012) Application of magnetic resonance techniques to evaluate soil compaction after grazing. J Soil Sci Plant Nutr 12(1):165–182

    Article  Google Scholar 

  • Cui Y, Tang A, Mantho AT, Laure ED (2008) Monitoring field soil suction using a miniature tensiometer. Geotech Test J 31:1–15

    Google Scholar 

  • Burk L, Dalgliesh N (2013) Estimating Plant Available Water Capacity (2nd ed.). Adelaide: Grains Research and Development Corporation. Retrieved from https://grdc.com.au/resources-and-publications/all-publications/publications/2013/05/grdc-booklet-plantavailablewater

  • Davidson JM, Biggar TW, Nielsen DR (1963) Gamma-radiation attenuation for measuring bulk density and transient water flow in porous materials. J Geophys Res 68(16):4777–4783

    Article  Google Scholar 

  • Dela, B. F. (2001). Measurement of soil moisture using gypsum blocks. By og Byg Dokumentation (No. 004). Hørsholm: SBI forlag.

  • Delta-T Devices (1999) ThetaProbe soil moisture sensor user manual. Delta-T Devices, Cambridge

  • Desilets D, Zreda M, Ferré TPA (2010) Nature ’ s neutron probe: land surface hydrology at an elusive scale with cosmic rays. Water Resour Res 46(October 2009):1–7. https://doi.org/10.1029/2009WR008726

    Article  Google Scholar 

  • Dias PC, Roque W, Ferreira EC, Dias JAS (2011) Proposal of a Novel Heat Dissipation Soil Moisture Sensor. In Proceedings of the 5th WSEAS international conference on Circuits, systems and signals (CSS’11). World Scientific and Engineering Academy and Society (WSEAS). (pp. 124–127). Stevens Point, Wisconsin, USA

  • Dlubac K, Knight R, Song Y, Bachman N, Grau B, Cannia, J. (2013). The use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA. Advancing Earth and Space Science, February, 1–49. https://doi.org/10.1002/wrcr.20151

  • Dobriyal P, Qureshi A, Badola R, Hussain SA (2012) A review of the methods available for estimating soil moisture and its implications for water resource management. J Hydrol 458–459:110–117. https://doi.org/10.1016/j.jhydrol.2012.06.021

    Article  Google Scholar 

  • Domínguez-Niño JM, Bogena HR, Huisman JA, Schilling B, Casadesús J (2019) On the accuracy of factory-calibrated low-cost soil water content sensors. Sensors 19(3101):1–18

    Google Scholar 

  • Dong C (1996) Frequency domain reflectometry: an old concept with a new application. Microw J 39(7):124+

    Google Scholar 

  • Dragolici CA (2016) Experimental methods in the study of neutron scattering at small angles. AIP Conf Proc 1634(1):50–57

    Google Scholar 

  • Dwevedi A, Kumar P, Kumar P, Kumar Y, Sharma YK, Kayastha AM (2017) 15 - soil sensors: detailed insight into research updates, significance, and future prospects. New Pesticides and Soil Sensors. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804299-1/00016-3

  • Edwards JC (2011) A Review of Applications of NMR Spectroscopy in the Petroleum Industry. In R. Nadkarni (Ed.), Spectroscopic Analysis of Petroleum Products and Lubricants (pp. 423–472). West Conshohocken PA: ASTM International. https://doi.org/10.1520/MONO10117M

  • Elsayed M, Glatz G, El-husseiny A, Alqubalee A, Adebayo A, Al-garadi K, Mahmoud M (2020) The effect of clay content on the spin–spin nmr relaxation time measured in porous media. ACS Omega 5:6545–6555. https://doi.org/10.1021/acsomega.9b04228

    Article  Google Scholar 

  • Evett SR (2000) Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management. In International Symposium (p. 494). Vienna: International Atomic Energy Agency (IAEA).

  • Evett SR, Steiner JL (1995) Precision of neutron scattering and capacitance type soil water content gauges from field calibration. Soil Sci Soc Am J 59(4):961–968

    Article  Google Scholar 

  • Evett S, Laurent J, Cepuder P, Vienna LS (2002) Neutron scattering, capacitance, and TDR soil water content measurements compared on four continents. 17th. WCSS 59(1021):1–10

    Google Scholar 

  • Sucre OE (2011) A Low-Field NMR Tool for Soil Moisture. RWTH Aachen University. Retrieved from http://publications.rwth-aachen.de/record/63078/files/3667.pdf

  • Falloon P, Jones CD, Ades M, Paul K (2011) Direct soil moisture controls of future global soil carbon changes: an important source of uncertainty. Glob Biogeochem Cycles 25(April):1–14. https://doi.org/10.1029/2010GB003938

    Article  Google Scholar 

  • Fasching, G. E., & Smith, N. S. (1988). High resolution capacitance imaging system (DOE/METC-8).

  • Fasching GE, Smith NS (1991) A capacitive system for 3-dimensional imaging of fluidized-beds. Rev Sci Instrum 62:2243–2251

    Article  Google Scholar 

  • Ferguson H, Gardner WH (1963) Diffusion theory applied to water flow data obtained using gamma ray absorption. Soil Sci Soc Am J 27(3):243–246

    Article  Google Scholar 

  • Ferrando R (2016) Synthesis and experimental characterization of nanoalloy structures. Front Nanosci 10:47–74. https://doi.org/10.1016/B978-0-08-100212-4.00003-1

    Article  Google Scholar 

  • FERTINNOWA. (2020). Using FDR Frequency Domain Reflectometry (ENVIROSCAN) sensors for precise soil measuring humidity and salinity to improve irrigation adjustments on soil - bound crops including under salinity conditions. Retrieved from http://www.fertinnowa.com/wp-%0Acontent/uploads/2017/11/FERTINNOWA-website-terms-and-conditions.pdfPage

  • Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land – atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112:901–919. https://doi.org/10.1016/j.rse.2007.06.025

    Article  Google Scholar 

  • Flint AL, Campbell GS, Ellett KM, Calissendorff C (2002) Calibration and temperature correction of heat dissipation matric potential sensors. Soil Sci Soc Am J 66:1439–1445

    Article  Google Scholar 

  • Fowler WB, Lopushinsky W (1987) An Economical, Digital Meter for Gypsum Soil Moisture Blocks. Soil Science Society of America Journal 53(1):302–305. https://doi.org/10.2136/sssaj1989.03615995005300010057x

  • Franz TE, Zreda M, Ferre TPA, Rosolem R (2013) An assessment of the effect of horizontal soil moisture heterogeneity on the area-average measurement of cosmic-ray neutrons. Water Resour Res 49(March):6450–6458. https://doi.org/10.1002/wrcr.20530

    Article  Google Scholar 

  • Franz TE, Wahbi A, Vreugdenhil M, Weltin G, Heng L, Oismueller M et al (2016) Using cosmic-ray neutron probes to monitor landscape scale soil water content in mixed land use agricultural systems. Appl Environ Soil Sci 2016:1–11

    Article  Google Scholar 

  • Franz TE, Wahbi A, Zhang J, Vreugdenhil M, Heng L, Dercon G et al (2020) Practical data products from cosmic-ray neutron sensing for hydrological applications. Front Water 2(April):1–13. https://doi.org/10.3389/frwa.2020.00009

    Article  Google Scholar 

  • Fredlund DG (1992) Background, Theory, and Research Related to the Use of Thermal Conductivity Sensors for Matric Suction Measurement. SSSA Special Publication Series (USA) (30):249–261. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US9415419

  • Freeland RS (1989) Review of soil moisture sensing using soil electrical conductivity. Trans ASAE 32(6):2190–2194

    Article  Google Scholar 

  • Furse C, Chung YC, Dangol R, Nielsen M, Mabey G, Woodward R (2003) Frequency-domain reflectometery for on-board testing of aging aircraft wiring. IEEE Trans Electromagn Compat 45(2):306–315

    Article  Google Scholar 

  • Gao Z, Zhu Y, Liiu C, Qian H, Cao W, Ni J (2018) Design and test of a soil profile moisture sensor. Sensors 18(1648):1–23. https://doi.org/10.3390/s18051648

    Article  Google Scholar 

  • Gardner WH (1986) Water Content 9(9)

  • Gardner W, Kirkham D (1952) Determination of soil moisture by neutron scattering. Soil Sci 73(5):391–402

    Article  Google Scholar 

  • Gardner WH, Klute A (1986) Water Content. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods— Agronomy Monograph No 9 (2nd ed., Vol. 9). Madison: American Society of Agronomy, Soil Science Society of America.

  • Garten CT Jr, Classen AT, Norby RJ (2009) Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant Soil 319(1–2):85–94. https://doi.org/10.1007/s11104-008-9851-6

    Article  Google Scholar 

  • Gaskin GJ, Miller JD (1996) Measurement of soil water content using a simplified impedance measuring technique. J Agric Eng Res 63(2):153–159

    Article  Google Scholar 

  • Geesing D, Bachmaier M, Schmidhalter U (2004) Field calibration of a capacitance soil water probe in heterogeneous fields. Aust J Soil Res 42(January):289–299. https://doi.org/10.1071/SR03051

    Article  Google Scholar 

  • George, B. H. (2006). Comparison of techniques for measuring the water content of soil and other porous media. University of Sydney. Retrieved from https://ses.library.usyd.edu.au/handle/2123/491

  • Grae T, Zehe E, Schlaeger S, Morgner M (2010) A quality assessment of spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments. Hydrol Earth Syst Sci 7:269–311

    Google Scholar 

  • Grant SA (2005) Hydraulic properties, temperature effects.. Encyclopedia of Soils in the Environment, 207–211. https://doi.org/10.1016/b0-12-348530-4/00379-9

  • Guadalupe J, Hernández R, Hernández GR, Gracia-Sánchez J, Rodríguez-Martínez T P., Rodríguez-Martínez, P. (2018). Provisional chapter Correlation between TDR and FDR soil moisture correlation between TDR and FDR soil moisture measurements at different scales to establish water measurements at different scales to establish water availability at the south of the Yucata. Soil Moisture, (Intech Open). https://doi.org/10.5772/intechopen.81477

  • Gupta VK, Jangid RA (2011) The Effect of bulk density on emission behavior of soil at microwave frequencies. Int J Microw Sci Technol 160129:1–6. https://doi.org/10.1155/2011/160129

    Article  Google Scholar 

  • Gurr CG (1962) Use of gamma rays in measuring water content and permeability in unsaturated columns of soil. Soil Sci 94:224–229

    Article  Google Scholar 

  • Hameed IH, Al-Rubaye AF, Kadhim MJ (2017) Uses of Nuclear magnetic resonance spectroscopy technique in pharmaceutical analysis: a review. Int J Curr Pharm Rev Res 8(2):79–84. https://doi.org/10.25258/ijcprr.v8i02.9189

    Article  Google Scholar 

  • Hanks RJ, Ashcroft G (1980) Applied Soil Physics. In Soil Water and Temperature Applications (1st ed., Vol. 8). Springer-Verlag New York. https://doi.org/10.1007/978-1-4684-0184-4

  • Hawdon A, McJannet D, Wallace J (2014) Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia. Water Resour Res 50:5029–5043. https://doi.org/10.1002/2013WR015138.Received

    Article  Google Scholar 

  • Heimovaara TJ (1994) Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils. Water Resour Res 30(2):189–199

    Article  Google Scholar 

  • Hillel, D. (1982). Introduction to Soil Physics. San Diego: Elsevier. https://doi.org/10.1016/C2009-0-03052-9

  • Holzman M, Rivas R, Carmona F (2017) A method for soil moisture probes calibration and validation of satellite estimates. MethodsX 4:243–249. https://doi.org/10.1016/j.mex.2017.07.004

    Article  Google Scholar 

  • Hook WR, Ferre TP, Livingston NJ (2005) The effects of salinity on the accuracy and uncertainty of water content measurement. Soil Sci Soc Am J 68(December 2013):47–56. https://doi.org/10.2136/sssaj2005.0931a

    Article  Google Scholar 

  • Hoseini Y, Albaji M (2017) Communications in soil science and plant analysis calibration of gypsum blocks for measuring saline soils moisture. Commun Soil Sci Plant Anal 47(22):2528–2537. https://doi.org/10.1080/00103624.2016.1254793

    Article  Google Scholar 

  • Hossain ABMZ, Mojid MA, Bhuiyan GK (2006) Construction of time-domain reflectometry ( TDR ) sensor for measuring soil- water content. International Journal of Sustainable Agricultural Technology 2(June):14–20

  • Hubbell JM, Sisson B, Water S, Systems M (1998) Advances in tensiometry for long-term monitoring of soil water pressures. Vadose Zone J 1(April):310–315. https://doi.org/10.1097/00010694-199804000-00002

    Article  Google Scholar 

  • Hueckel T (2014) Thermal volume changes of mineral-water system in low-porosity clay soil. Can Geotech J 25(May):807–825. https://doi.org/10.1139/t88-089

    Article  Google Scholar 

  • Hueckel T, Borsetto M, Peano A (1987) A study of thermo-plastic hydraulic coupling in clays applied to nuclear waste disposal. In 2nd International Conference on Constitutive Laws for Engineering Materials, Theory and Application, pp. 311–318

  • Huisman J, Hubbard S, Redman J, Annan P (2003) Measuring soil water content with ground penetrating radar: a review. Vadose Zone J 2:476–491. https://doi.org/10.2113/2.4.476

    Article  Google Scholar 

  • IAEA (International Atomic Energy Agency) (2008) Field Estimation of Soil Water Content. Vienna, Austria: Soil and Water Management & Crop Nutrition Section. Retrieved from https://www.iaea.org/publications/7801/field-estimation-of-soil-water-content

  • Ibarra S (1997) Soil Moisture and Tensiometer Measurement Made to Assist The Management of Supplementary Irrigation of Maize in Eastern Ontario. Macdonald Campus of McGill University. Montreal Canada. Retrieved from https://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/ftp01/MQ37130.pdf

  • International Atomic Energy Agency. (2000). Comparison of soil water measurement using the time domain reflectometry neutron scattering, and capacitance methods. Vienna: IAEA. Retrieved from https://www.iaea.org/publications/5932/comparison-of-soil-water-measurement-using-the-neutron-scattering-time-domain-reflectometry-and-capacitance-methods

  • Irmak S, Haman DZ (2001) Performance of the Watermark granular matrix sensor in sandy soils. Appl Eng Agric 17(6):787–795

    Article  Google Scholar 

  • Irmak S, Irmak A (2005) Performance of frequency-domain reflectometer, capacitance, and pseudo-transit time-based soil water content probes in four coarse-texture soils. Appl Eng Agric 21(C):999–1008

    Article  Google Scholar 

  • Irrigation Engineering (2014) LESSON 21 soil water. from http://ecoursesonline.iasri.res.in/mod/page/view.php?id=1993. Retrieved Jul 16, 2020

  • Jabro J, Leib BG, Jabro A (2005) Estimating soil water content using site-specific calibration of capacitance measurements from Sentek EnviroSCAN systems. Appl Eng Agric 21(3):393–399. https://doi.org/10.13031/2013.18458

    Article  Google Scholar 

  • Jackisch C, Germer K, Graeff T, Andrä I, Schulz K, Schiedung M et al (2020) Soil moisture and matric potential – an open field comparison of sensor systems. Earth Syst Scie Data 12:683–697

    Article  Google Scholar 

  • Jakobi J, Huisman JA, Vereecken H (2018) Cosmic ray neutron sensing for simultaneous soil water content and biomass quantification in drought conditions. Water Resour Res (October):1–21. https://doi.org/10.1029/2018WR022692

  • Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H et al (2020) Error estimation for soil moisture measurements with cosmic ray neutron sensing and implications for rover surveys. Front Water 2(May):1–15. https://doi.org/10.3389/frwa.2020.00010

    Article  Google Scholar 

  • Jana RB, Ershadi A, Mccabe MF (2016) Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland. Hydrol Earth Syst Sci 20(1994):3987–4004. https://doi.org/10.5194/hess-20-3987-2016

    Article  Google Scholar 

  • Jiao Q, Zhu Z, Du F (2014) Theory and application of measuring mesoscale soil moisture by cosmic-ray fast neutron probe. In 35th International Symposium on Remote Sensing of Environment (ISRSE35), pp. 1–8. https://doi.org/10.1088/1755-1315/17/1/012147

  • Johansson J, Blom A, Dvinskikh S (2013) NMR-measurements for determination of local moisture content of coated wood. J Coat Technol Res 10(5):601–607. https://doi.org/10.1007/s11998-013-9484-4

    Article  Google Scholar 

  • Johnson AI (1962) Methods of Measuring Soil Moisture in the Field. In Water Supply Paper (1st ed., pp. 1–29). Washington: United State Government Printing Office. https://doi.org/10.3133/wsp1619U

  • Jonard F, Bogena H, Caterina D, Garré S, Klotzsche A, Monerris A, Schwank M (2019) Ground-based soil moisture determination. https://doi.org/10.1007/978-3-662-48297-1

  • Jones HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58(2):119–130. https://doi.org/10.1093/jxb/erl118

    Article  Google Scholar 

  • Jones SB, Wraith M, Or D (2002) Time domain reflectometry measurement principles and applications. Hydrol Process 153(June 2001):141–153. https://doi.org/10.1002/hyp.513

    Article  Google Scholar 

  • Juang J, Radharamanan R (2010) Low cost soil moisture monitoring system: a Capstone design project. In American Society for Engineering Education., 1–8

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):3–6. https://doi.org/10.1038/nature09396

    Article  Google Scholar 

  • Kabat, P., Beekma, J., & Ritzmea, H. (1994). Drainage principles and applications. In R. H.P (Ed.), Water in the unsaturated zone (2nd ed., pp. 383–434). Wageningen: International Institute for Land reclamation and Improvement.

  • Kafarski M, Majcher J, Wilczek A, Szyplowska A, Lewandowski A, Zackiewicz A, Skierucha W (2019) Penetration depth of a soil moisture profile probe working in time-domain transmission mode †. Sensors 19(5485):1–13

    Google Scholar 

  • Kaptein ND, Titshall LW (2019) A simple calibration of Hobo 4 channel analogue dataloggers for use with Watermark 253 – L soil water potential sensors. Water SA 45(2):160–164

    Google Scholar 

  • Kasim AA, Carlson TN, Usman HS (2020) Limitations in validating derived soil water content from thermal/optical measurements using the simplified triangle method. Remote Sens 12(1155):1–15

    Google Scholar 

  • Kaur A, Fanourakis GC (2010) Effect of hydrometer type on particle size distribution of fine grained soil. In Proceedings of the First Southern African Geotechnical Conference, pp. 1–8)

  • Keating K, Walsh DO, Grunewald E (2020) The effect of magnetic susceptibility and magnetic field strength on porosity estimates determined from low-field nuclear magnetic resonance. J Appl Geophys 179:104096. https://doi.org/10.1016/j.jappgeo.2020.104096

    Article  Google Scholar 

  • Keys BWS (1990) Borehole geophysics applied to ground-water investigations. US Geological Survey: US Department of the Interior

  • Kim H, Cosh MH, Bindlish R, Lakshmi V (2020) Field evaluation of portable soil water content sensors in a sandy loam. Vadose Zone J 19(e20033):1–17. https://doi.org/10.1002/vzj2.20033

    Article  Google Scholar 

  • Kirkham MB (2014) Time domain reflectometry. Principles of soil and plant water relations. Academic Press, 53–69. https://doi.org/10.1016/B978-0-12-420022-7.00005-7

  • Knight R, Walsh DO, Butler JJ Jr, Grunewald E, Liu G, Andrew D et al (2016) NMR logging to estimate hydraulic conductivity in unconsolidated aquifers. Ground Water 54(1):104–114. https://doi.org/10.1111/gwat.12324

    Article  Google Scholar 

  • Kodama M, Kudo S, Kosuge T (1985) Application of atmospheric neutrons to soil moisture measurement. Soil Sci 140(4):237–242

    Article  Google Scholar 

  • Kohli M, Schron M, Zreda M, Schmidt U, Dietrich P, Zacharias S (2015) Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour Res 51:5772–5790. https://doi.org/10.1002/2015WR017169.Received

    Article  Google Scholar 

  • Kohli M, Schron M, Schmidt U (2018) Response functions for detectors in cosmic ray neutron sensing. Nucl Inst Methods Phys Res B 902:184–189. https://doi.org/10.1016/j.nima.2018.06.052

    Article  Google Scholar 

  • Kothawade SN, Furkhan SM, Raoof A., Mhaske KS (2016) Efficient Water management for Greenland using soil moisture sensor. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2016), 1–4

  • Krause P, Naujoks M, Fink M, Kroner C (2009) The impact of soil moisture changes on gravity residuals obtained with a superconducting gravimeter. J Hydrol 373(1–2):151–163. https://doi.org/10.1016/j.jhydrol.2009.04.019

    Article  Google Scholar 

  • Kumar MS, Chandra TR, Kumar DP, Manikandan MS (2016) Monitoring moisture of soil using low cost homemade soil moisture sensor and Arduino UNO. In 3rd International Conference on Advanced Computing and Communication Systems (ICACCS -2016), pp. 4–7

  • Ledieu J, De Ridder P, De Clerck P, Dautrebande S (1986) A method of measuring soil moisture by time-domain reflectometry. J Hydrol 88(3):319–328

    Article  Google Scholar 

  • Li J, Smith DW, Fityus SG, Sheng D (2004) Numerical analysis of neutron moisture probe measurements. Int J Geomech 3(1):11–20

    Article  Google Scholar 

  • Li N, Liu K, Yang X, Cao M (2016) Research on application of wax deposition detection in the nonmetallic pipeline based on electrical capacitance tomography. J Sens 2016:1–10

    Google Scholar 

  • Li P, Zha Y, Tso CM, Shi L, Yu D, Zhang Y, Zeng W (2020) Data assimilation of uncalibrated soil moisture measurements from frequency-domain reflectometry. Geoderma 374(October 2019):114432. https://doi.org/10.1016/j.geoderma.2020.114432

    Article  Google Scholar 

  • Lin H, Zhou X (2008) Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. Eur J Soil Sci 59(February):34–49. https://doi.org/10.1111/j.1365-2389.2007.00988.x

    Article  Google Scholar 

  • Lin BB, Egerer MH, Liere H, Jha S, Philpott SM (2018) Soil management is key to maintaining soil moisture in urban gardens facing changing climatic conditions. Sci Rep 8(November):1–9. https://doi.org/10.1038/s41598-018-35731-7

    Article  Google Scholar 

  • Linmao Y, Jin Y, Qi J (2016) 2012 International Conference on Solid State Devices and Materials Science FDR Soil Moisture Sensor for Environmental Testing and Evaluation. Phys Procedia 25(May):1523–1527. https://doi.org/10.1016/j.phpro.2012.03.271

    Article  Google Scholar 

  • Loiskandl W, Buchan GD, Sokol W, Novak V, Himmelbauer M (2010) Calibrating electromagnetic short soil water sensors. J Hydrol Hydromech 58(2):114–125. https://doi.org/10.2478/v10098-010-0011-3

    Article  Google Scholar 

  • Lukanu G, Savage MJ (2006) Calibration of a frequency-domain reflectometer for determining soil-water content in a clay loam soil, 2006. https://doi.org/10.4314/wsa.v32i1.5237

  • Lunt IA, Hubbard SS, Rubin Y (2005) Soil moisture content estimation using ground-penetrating radar reflection data. J Hydrol 307:254–269. https://doi.org/10.1016/j.jhydrol.2004.10.014

    Article  Google Scholar 

  • Luo X, Wells LG (1992) Evaluation of Gamma Ray Attenuation for Measuring Soil Bulk Density Part I . Laboratory Investigation. Transactions of the ASAE 35(1):17–26. https://doi.org/10.13031/2013.28564

  • Luo L, Lin H, Li S (2010) Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J Hydrol 393(1–2):53–64. https://doi.org/10.1016/j.jhydrol.2010.03.031

    Article  Google Scholar 

  • Maghrabi A, Almutayri M (2016) Atmospheric effect on cosmic ray muons at high cut-off rigidity station. Adv Astron 2016:1–9

    Article  Google Scholar 

  • Maghrabi A, Almutayri M, Alharbi H, Baig M (2015) Atmospheric-weighted temperature and its influence on cosmic ray muons. In Proceedings of Science, pp. 1–8

  • Malicki MA, Plagge R, M, W. (1992) Application of time-domain reflectometry (TDR) soil moisture miniprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores. Irrig Sci 13(2):65–72

    Article  Google Scholar 

  • Mao X, Xu Z, Luo N, Zhang Y, Saffigna PG (2002) Nitrate in soil humic acids revealed by 14 N nuclear magnetic resonance spectroscopy. Aust J Soil Res 40(5):717–726

    Article  Google Scholar 

  • Martinez EM, Cancela JJ, Cuesta TS, Neira XX (2011) Review. Use of psychrometers in field measurements of plant material: accuracy and handling difficulties. Span J Agric Res 9(1):313–328

    Article  Google Scholar 

  • Matile L, Berger R, Krebs R (2013) Characterization of a new heat dissipation matric potential sensor. Sensors 13:1137–1145. https://doi.org/10.3390/s130101137

    Article  Google Scholar 

  • Matlan SJ, Taha MR, Mukhlisin M (2016) Assessment of model consistency for determination of soil–water characteristic curves. Arab J Sci Eng 41(4):1233–1240. https://doi.org/10.1007/s13369-015-1888-2

    Article  Google Scholar 

  • Matula S, Bát’ková K, Legese WL (2016) Moisture sensors applying factory and own. Sensors 16(1912):1–22. https://doi.org/10.3390/s16111912

    Article  Google Scholar 

  • Matzkanin GA, Gardner CG (1975) Nuclear magnetic resonance sensors for moisture measurement in roadways. In 54th Annual Meeting of the Transportation Research Board, pp. 77–86

  • Mcisaac GR (2010) Time Domain Reflectometry Measurement of Water Content and Electrical Conductivity Using a Polyolefin Coated TDR Probe. University of Waterloo, Ontario, Canada. Retrieved from http://www.gret-perg.ulaval.ca/uploads/tx_centrerecherche/McIsaac_MScThesis_2010_01.pdf

  • Meigh AC, Skipp BO (1960) Gamma-ray and neutron methods of measuring soil density and moisture. Geotechnique 10(3):110–126

    Article  Google Scholar 

  • Merela M, Oven P, Sers I, Mikac U (2009) A single point NMR method for an instantaneous determination of the moisture content of wood. Holzforschung 63(May):348–351. https://doi.org/10.1515/HF.2009.050

    Article  Google Scholar 

  • Michael AM (1978) Irrigation theory and practice. Viska Publishing House PVTLTO, New Delhi

  • Middleton WEK (1942) The early history of hygrometry and the controversy between De Saussure and De Luc. Q J R Meteorol Soc 681(297):247–261

    Article  Google Scholar 

  • Min L, Kassim A, Gofar N (2011) Performances of two instrumented laboratory models for the study of rainfall in fi ltration into unsaturated soils. Eng Geol 117(1–2):78–89. https://doi.org/10.1016/j.enggeo.2010.10.007

    Article  Google Scholar 

  • Minet J, Lambot S, Delaide G, Huisman JA, Vereecken H, Vanclooster M (2010) A generalized frequency domain reflectometry modeling technique for soil electrical properties determination. Vadose Zone J 9(November):1063–1072. https://doi.org/10.2136/vzj2010.0004

    Article  Google Scholar 

  • Moemen, A. M. E.-H. (2012). Effect of Gamma Rays and Salinity on Growth and Chemical Composition of Ambroisa maritima L. Plant. Cairo University, Egypt. Retrieved from http://inis.iaea.org/search/search.aspx?orig_q=RN:45099924

  • Mohamad HM, Adnan Z, Razali SNM, Zolkefle SNA (2020) Assessment for applicability of microwave oven in rapid determination of moisture content in peat soil. Int J Eng Sci Technol 15(3):2110–2118

    Google Scholar 

  • Moroizumi T, Sasaki Y (2008) Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry. Soil Sci Soc Am J 72(6):1520–1526. https://doi.org/10.2136/sssaj2006.0212

    Article  Google Scholar 

  • Morrison, R., Evans, J. G., Angadi, S. S., Ball, L., Chakraborty, T., Cooper, H., … Jenkins, A. (2017). Cosmic-ray soil water monitoring: the development, status & potential of the COSMOS- India network. Retrieved from https://core.ac.uk/download/pdf/145240089.pdf

  • Mourmeaux N, Tran AP, Lambot S (2014) Soil permittivity and conductivity characterization by full-wave inversion of near-field GPR data. In 15th International Conference on Ground Penetrating Radar, pp. 497–502

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800. https://doi.org/10.1016/j.rse.2011.02.019

    Article  Google Scholar 

  • Mueller, A. (2015). The Effect of Drying and Drying Temperature on Soil Analytical Test Values. Oklahoma State University, United States. Retrieved from https://hdl.handle.net/11244/45285

  • Mukhlisin, M., Saputra, A., El-shafie, A., & Taha, M. R. (2012). Measurement of Dynamic Soil Water Content Based on Electrochemical Capacitance Tomography. Int. J. Electrochem. Sci, 7, 5457–5466.

  • Mukhlisin M, Baidillah MR, Taha MR (2014) Electrical capacitance volume tomography for measurement soil water infiltration in vessel experiments. J Cent South Univ 21:358–364. https://doi.org/10.1007/s11771-014-1948-x

    Article  Google Scholar 

  • Muñoz-carpena, R., Shukla, S., & Morgan, K. (2004). Field Devices For Monitoring Soil Water Content. University of Florida. https://doi.org/10.32473/edis-ae266-2004

  • Nagare RM, Schincariol RA, Quinton WL, Hayashi M (2011) Laboratory calibration of time domain reflectometry to determine moisture content in undisturbed peat samples. Eur J Soil Sci 62(4):505–515. https://doi.org/10.1111/j.1365-2389.2011.01351.x

    Article  Google Scholar 

  • Nakashima M, Inoue M, Sawada K, Nicholl C (1998) Measurement of soil water content by amplitude domain reflectometry method and its calibration. J Hydrol 40(4):509–519

    Google Scholar 

  • NASA. (1999). Soil Moisture. National Aeronautics and Space Administration. URL: https://weather.msfc.nasa.gov/landprocess/ (Accessed: 30 August 2020)

  • Neuffer D, Alvarez A, Owens DH, Ostrowski KL, Luke SP, Williams RA (1999) Control of pneumatic conveying using ECT control of pneumatic conveying using ECT. In 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, pp. 71–76

  • Nielsen AF (1972) Gamma-ray-attenuation used for measuring the moisture content and homogeneity of porous concrete. Build Sci 7(3):257–263

    Article  Google Scholar 

  • Noborio K, Horton R, Tan CS (1999) Time domain reflectometry probe for simultaneous measurement of soil matric potential and water content. Soil Sci Soc Am J 63(6):1500–1505

    Article  Google Scholar 

  • O’Kelly BC (2004) Accurate determination of moisture content of organic soils using the oven drying method. Dry Technol 22(7):1767–1776

    Article  Google Scholar 

  • O’Kelly BC (2007) Drying technology: an oven-drying characteristics of soils of different origins. Dry Technol 23(October 2014):37–41. https://doi.org/10.1081/DRT-200059149

    Article  Google Scholar 

  • Ochsner TE, Cosh MH, Cuenca RH, Dorigo WA, Draper CS, Hagimoto Y et al (2013) State of the art in large-scale soil moisture monitoring. Soil Sci Soc Am J 77:1888–1919. https://doi.org/10.2136/sssaj2013.03.0093

    Article  Google Scholar 

  • Omran EE (2016) A simple model for rapid gypsum determination in arid soils. Model Earth Syst Environ 2(4):1–12. https://doi.org/10.1007/s40808-016-0242-3

    Article  Google Scholar 

  • ONSET (2016) Hobo 4-Channel Analogue Datalogger (UX120-006M): instruction manual, from http://www.onsetcomp.com/files/manual_pdfs/17384-EUX120-06MManual.pdf. Retrieved Jan 30, 2021

  • Onwuka B, Mang B (2018) Effects of soil temperature on some soil properties and plant growth. Adv Plants Agric Res 8(1):34–37. https://doi.org/10.15406/apar.2018.08.00288

    Article  Google Scholar 

  • Pandey, S., Shrivastava, A., Vijay, R., & Bhandari, S. (2019). A review on smart irrigation and crop prediction system. In International Conference on Sustainable Computing in Science, Technology & Management (SUSCOM-2019) A, pp. 1970–1977

  • Perlo J, Danieli E, Perlo J, Blümich B, Perlo J, Danieli E et al (2013) Optimized slim-line logging NMR tool to measure soil moisture in situ. J Magn Reson 233:74–79. https://doi.org/10.1016/j.jmr.2013.05.004

    Article  Google Scholar 

  • Phene CJ, Howell TA (1986) Soil sensor control of high frequency irrigation systems.

  • Phene CJ, Hoffman GJ, Rawlins SK (1970) Measuring soil matric potential in situ by sensing heat dissipation within a porous body: I. Theory and sensor construction. Soil Sci Soc Am J 35:27–33

    Article  Google Scholar 

  • Phogat VK, Aylmore LA (1989) Evaluation of soil structure by using computer assisted tomography b. Aust J Soil Res 27:313–323

    Article  Google Scholar 

  • Pinem RE (2016) Alat Ukur Kelembaban Tanah Menggunakan Sensor YL-69 Berbasis Android Phone. Universitas Sumatera Utara, Medan

  • Pires LF, Pereira AB (2014) Gamma-ray attenuation to evaluate soil porosity: an analysis of methods. Sci World J 2014(1):1–10. https://doi.org/10.1155/2014/723041

    Article  Google Scholar 

  • Pires LF, Bacchi OOS, Reichardt K (2005) Soil water retention curve determined by gamma-ray beam attenuation. Soil Tillage Res 82(1):89–97

    Article  Google Scholar 

  • Pires LF, Cássaro FAM, Tech L, Pereira LAA, De Oliveira JAT (2020) Gamma ray attenuation for determining soil density: laboratory experiments for environmental physics and engineering courses. Rev Bras Ensino Física 42(42):1–5

    Google Scholar 

  • Pohlmeier A, Oros-Peusquens A, Javaux M, Menzel MI, Vanderborght J, Kaffanke J et al (2008) Changes in soil water content resulting from Ricinus root uptake monitored by magnetic resonance imaging. Vadose Zone J 7(3):1010–1017. https://doi.org/10.2136/vzj200

    Article  Google Scholar 

  • Pokorný J, Rejšková A (2008) Water cycle management. ENKI, Třeboň, Czech Republic. https://doi.org/10.1016/B978-008045405-4.00081-1

  • Prebble RE, Currie JA (1970) Soil water measurement by a low-resolution nuclear magnetic resonance technique. J Soil Sci 21(2):273–288

    Article  Google Scholar 

  • Provenzano G, Rallo G, de Almeida CDGC, de Almeida BG (2020) Development and validation of a new calibration model for Diviner 2000® probe based on soil. Water 12(3414):1–16

    Google Scholar 

  • Rabadh D, Gallart F (1993) Monitoring soil water content variability in the Cal Parisa basin (Alt Llobregat) with TDR. Acta Geol Hisp 28(2–3):85–93

    Google Scholar 

  • Ragab R, Evans JG, Battilani A, Solimando D (2017) The Cosmic-Ray Soil Moisture Observation System (COSMOS) for estimating the crop water requirement: new approach. Irrig Drain 468:456–468. https://doi.org/10.1002/ird.2152

    Article  Google Scholar 

  • Rai AC, Kumar P, Pilla F, Skouloudis AN, Di S, Ratti C et al (2017) End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci Total Environ 607–608:691–705. https://doi.org/10.1016/j.scitotenv.2017.06.266

    Article  Google Scholar 

  • Rallo G, Provenzano G, Castellini M, Sirera AP (2018) Application of EMI and FDR sensors to assess the fraction of transpirable soil water over an olive grove. Water 10(168):1–16. https://doi.org/10.3390/w10020168

    Article  Google Scholar 

  • Rasooli A, Itard L (2019) In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors. Appl Energy 253(June):113539. https://doi.org/10.1016/j.apenergy.2019.113539

    Article  Google Scholar 

  • Razali SFM, Wahab JA, Mukhlisin M, Arshad I, Mohamed ZS (2013) Effectiveness of electrical capacitance volume tomography method in soil water content measuremenT. J Teknol 65(1):55–59

    Google Scholar 

  • Reder A, Rianna G, Pagano L (2014) Calibration of TDRs and heat dissipation probes in pyroclastic soils. Pro Earth Planet Sci 9:171–179. https://doi.org/10.1016/j.proeps.2014.06.016

    Article  Google Scholar 

  • Reginato RJ, Bavel CHM van (1964) Soil water measurement with gamma attenuation. In Soil Science Society of America Proceedings, pp. 721–724

  • Ren T, Ochsner T, Robert, & Ju, Z. (2003) Heat-pulse method for soil water content measurement: influence of the specific heat of the soil solids. Soil Sci Soc Am J 67(6):1631–1634

    Article  Google Scholar 

  • Reynolds SG (1970) The gravimetric method of soil moisture determination part I. A study of equipment and methodological problems. J Hydrol 11:258–273

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 318(1):318–333. https://doi.org/10.1063/1.1745010

    Article  Google Scholar 

  • Rigden JS (1988) Isidor Isaac Rabi, 29 July 1898 · 11 January 1988. In Proceedings of the American Philosophical Society, pp. 114–118

  • Robinson DA, Gardner CMK, Cooper JD (1999) Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity. J Hydrol 223(3):198–211

    Article  Google Scholar 

  • Robinson DA, Schaap MG, Or D, Jones SB (2005) On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials. Water Resour Res 41:1–9. https://doi.org/10.1029/2004WR003816

    Article  Google Scholar 

  • Robinson DA, Campbell CS, Hopmans JW, Hornbuckle BK, Jones SB, Knight R et al (2008) Soil moisture measurement for ecological and hydrological watershed-scale observations: a review. Vadose Zone J 7:358–389. https://doi.org/10.2136/vzj2007.0143

    Article  Google Scholar 

  • Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hoiiinger SE, Speranskaya NA et al (2000) The Global Soil Moisture Data Bank. Bull Am Meteorol Soc 81(6):1281–1299

    Article  Google Scholar 

  • Romero-Ruiz A, Linde N, Keller T, Or D (2018) A review of geophysical methods for soil structure characterization. Rev Geophys 56(4):672–697

    Article  Google Scholar 

  • Rosolem R, Shuttleworth WJ, Franz T, Zeng X (2013) The effect of atmospheric water vapor on neutron count in the Cosmic-Ray Soil Moisture Observing System, November 2015. https://doi.org/10.1175/JHM-D-12-0120.1

  • Rothe A, Weis W, Kreutzer K, Matthies D, Hess U, Ansorge B (1997) Changes in soil structure caused by the installation of time domain refiectometry probes and their influence on the measurement of soil moisture. Water Resour Res 33(7):1585–1593

    Article  Google Scholar 

  • Rowlandson TL, Berg AA, Bullock PR, Ojo ER, Mcnairn H, Wiseman G, Cosh MH (2013) Evaluation of several calibration procedures for a portable soil moisture sensor. J Hydrol 498:335–344. https://doi.org/10.1016/j.jhydrol.2013.05.021

    Article  Google Scholar 

  • Roxy MS, Sumithranand VB, Renuka G (2010) Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. J Earth Syst Sci 4:507–517

    Article  Google Scholar 

  • Ruffolo D, Sáiz A, Mangeard P, Kamyan N, Muangha P, Nutaro T et al (2016) Monitoring short-term cosmic-ray spectral variations using neutron monitor time-delay measurement. Astrophys J 817(1):38. https://doi.org/10.3847/0004-637X/817/1/38

    Article  Google Scholar 

  • Rupika PA, Arutselvi PSS (2015) Acquiring soil-humidity by LabVIEW. Int J Sci Res Dev 3(01):898–900

    Google Scholar 

  • Rytting, D. (1984). Let Time Domain Response Provide Additional Insight into Network Behavior. In 23rd ARFTG Conference Digest (pp. 126–138). https://doi.org/10.1109/ARFTG.1984.323583

  • Sadeghiamirshahidi M, Vitton SJ (2019) Analysis of drying and saturating natural gypsum samples for mechanical testing. J Rock Mech Geotech Eng 11(2):219–227. https://doi.org/10.1016/j.jrmge.2018.08.007

    Article  Google Scholar 

  • Saleh M, Elhajj IH (2016) Experimental evaluation of low-cost resistive soil moisture sensors. In 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), pp. 1–6. https://doi.org/10.1109/IMCET.2016.7777448

  • Sample, D. J., Owen, J. S., Fields, J. S., & Barlow, S. (2016). Understanding Soil Moisture Sensors : A Fact Sheet for Irrigation Professionals in Virginia. Virginia Cooperative Extension, BSE-198P, 1–12. https://doi.org/10.13140/RG.2.2.33633.51048

  • Scanlon BR, Andraski BJ, Bilskie JIM (2002) 3.2.4. Miscellaneous methods for measuring matric or water potential. Methods of soil analysis: part 4 physical methods, 2002 (Methodsofsoilan4), 643–670

  • Schafer, G. J., Barker, P. R., & Northey, R. D. (1984). Density of Undisturbed Soil Cores by Gamma Ray Attenuation. (D. Isaacs, Ed.), N.Z. Soil Bureau Scientific Report. https://doi.org/10.7931/DL1-SBSR-67

  • Schmidt JP, Sripada RP, Beegle DB, Rotz CA, Hong N (2011) Within-field variability in optimum nitrogen rate for corn linked to soil moisture availability. Nutr Manage Soil Plant Anal 75(1):306–316. https://doi.org/10.2136/sssaj2010.0184

    Article  Google Scholar 

  • Schmugge TJ, Jackson TJ, McKim HK (1980) Survey of methods for soil moisture determination. Water Resour Res 16(6):961–979

    Article  Google Scholar 

  • Schrön M, Zacharias S, Womack G, Köhli M, Desilets D, Oswald SE et al (2018) Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geosci Instrum Method Data Syst 7:83–99

    Article  Google Scholar 

  • Schröter I, Paasche H, Dietrich P (2015a) Estimation of Catchment-scale soil moisture patterns based on terrain data and sparse TDR measurements using a fuzzy C-means clustering approach. Vadose Zone J 14:1–16. https://doi.org/10.2136/vzj2015.01.0008

    Article  Google Scholar 

  • Schröter I, Paasche H, Dietrich P, Wollschläger U (2015b) Estimation of catchment-scale soil moisture patterns based on terrain data and sparse TDR measurements using a fuzzy C-means clustering approach. Vadose Zone J 2017:1–48. https://doi.org/10.2136/vzj2015.01.0008

    Article  Google Scholar 

  • SENTEK (1995) Factory literature for The EnviroSCAN. Sentek Pty. Ltd, Australia

  • Sevostianova E, Deb S, Serena M, Vanleeuwen D (2015) Accuracy of two electromagnetic soil water content sensors in saline soils. Soil Sci Soc Am J 79(July):1752–1759. https://doi.org/10.2136/sssaj2015.07.0271

    Article  Google Scholar 

  • Seyfried MS, Murdock MD (2004) Measurement of soil water content with a 50-MHz soil dielectric sensor. Soil Sci Soc Am J 68(2):394–403

    Article  Google Scholar 

  • Sharma, V. (2018). Methods and Techniques for Soil Moisture Monitoring. University of Wyoming. URL: http://wyoextension.org/publications/html/B1331/ (Accessed: January 30 2021)

  • Shen S, Guo P, Wu J, Ding Y, Chen F, Meng F, Xu Z (2019) Optimized inside-out magnetic resonance probe for soil moisture measuring in situ. J Magn Reson 307:106565

    Article  Google Scholar 

  • Shiozawa S, Campbell GS (2009) Soil thermal conductivity. Remote Sens Rev 5(1):301–310

    Article  Google Scholar 

  • Shock, C. C. (2003). Soil water potential measurement by granular matrix sensors. In The Encyclopedia of Water Science (2nd ed., p. 899). Retrieved from https://fic.oregonstate.edu/biblio/soil-water-potential-measurement-granular-matrix-sensors

  • Shock CC, Wang F (2010) Soil water tension, a powerful measurement for productivity and stewardship. HortScience 46(2):178–185

    Article  Google Scholar 

  • Shock, C. C., Barnum, J. M., & Seddigh, M. (1998). Calibration of Watermark Soil Moisture Sensors for Irrigation Management. In Proceedings of the International Irrigation Show, Irrigation Association (pp. 139–146). San Diego.

  • Shortt, R., Eng, P., Verhallen, A., & Fisher, P. (2011). Monitoring Soil Moisture to Improve Irrigation Decisions. OMAFRA, (11), 1–12. Retrieved from http://www.omafra.gov.on.ca/english/engineer/facts/11-037.htm

  • Shuai, F., & Fredlund, D. G. (2000). Use of a New Thermal Conductivity Sensor to Measure Soil Suction. In Advances in Unsaturated Geotechnics (pp. 1–12). https://doi.org/10.1061/40510(287)1

  • Shukla A, Patel P, Srivastava HS (2014) Soil moisture estimation using gravimetric technique and FDR probe technique: a comparative analysis. Am Int J Res Formal Appl Nat Sci 2015:89–92

    Google Scholar 

  • Simpson AJ, Simpson MJ, Soong R (2012) Nuclear magnetic resonance spectroscopy and its key role in environmental research. Environ Sci Technol 46:11488–11496

    Article  Google Scholar 

  • Singh C, Singh T, Kumar A, Mudahar GS (2004) Energy and chemical composition dependence of mass attenuation coefficients of building materials. Ann Nucl Energy 31:1199–1205. https://doi.org/10.1016/j.anucene.2004.02.002

    Article  Google Scholar 

  • Sivakumar MVK (2007) Interactions between climate and desertification. Agric For Meteorol 142(2):143–155. https://doi.org/10.1016/j.agrformet.2006.03.025

    Article  Google Scholar 

  • Skierucha, W. (2011). Time Domain Reflectometry : Temperature- dependent Measurements of Soil. IntechOpen, 369–386. https://doi.org/10.5772/17162

  • Skierucha W, Wilczek A (2010) A FDR sensor for measuring complex soil Dielectric permittivity in the 10–500 MHz frequency range. Sensors 10(4):3314–3329. https://doi.org/10.3390/s100403314

    Article  Google Scholar 

  • Smajstrla, A. G., & Harrison, D. S. (2011). Tensiometers for Soil Moisture Measurement and Irrigation Scheduling. Circular - Florida Cooperative Extension Service (USA), (487), 1–8. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US874624788

  • Smajstrla AG, Locascio SJ (1996) Tensiometer-controlled, drip-irrigation scheduling of tomato. Appl Eng Agric 12:315–319

    Article  Google Scholar 

  • Sobolewski, M. (2003). Effect of Non-Homogeneity of Pliocene Clay in The Vicinity of Warwas and Their Physical Properties. Electronic Journal of Polish Agricultural Universities, 6(2), 1–12. Retrieved from http://www.ejpau.media.pl/volume6/issue2/civil/art-01.html

  • Spandana K, Pabboju S (2020) Applications of IoT for soil quality. In ICICCT (pp. 277–286). Springer Singapore. https://doi.org/10.1007/978-981-13-8461-5

  • Spelman D, Kinzli K, Asce M, Kunberger T, Asce AM (2013) Calibration of the 10HS soil moisture sensor for southwest Florida. J Irrig Drain Eng 139(December):965–971. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000647

    Article  Google Scholar 

  • Stafford JV (1988) Remote, non-contact of soil moisture and in-situ measurement content: a review. J Agric Eng Res 41:151–172

    Article  Google Scholar 

  • Starr, J. L., & Paltineanu, I. C. (2002). Methods for measurement of soil water content: Capacitance devices. In Methods of Soil Analysis: Part 4 Physical Methods (pp. 463–474). Madison: Soil Science Society of America.

  • Steelman CM, Endres AL (2011) Comparison of petrophysical relationships for soil moisture estimation using GPR ground waves. Vadose Zone J 10(1):270–285. https://doi.org/10.2136/vzj2010.0040

    Article  Google Scholar 

  • Stenitzer E (1993) Monitoring soil moisture regimes of field crops with gypsum blocks. Theor Appl Climatol 165(48):159–165

    Article  Google Scholar 

  • Stevanato L, Baroni G, Cohen Y, Fontana CL, Gatto S, Lunardon M et al (2019) A novel cosmic-ray neutron sensor for soil moisture estimation over large areas. Agriculture 9(202):1–14

    Google Scholar 

  • Su Z (2002) The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–100

    Article  Google Scholar 

  • Suiter CL, Malave VD, Garboczi EJ, Widegren JA, Mclinden MO (2020) Nuclear magnetic resonance (NMR) spectroscopy for the in situ measurement of vapor − liquid equilibria. J Chem Eng Data 65(7):3318–3333. https://doi.org/10.1021/acs.jced.0c00113

    Article  Google Scholar 

  • Sultana SN, Hazarika U, Misra UK (2017) Improvement of water use efficiency and remote sensing applications for surface soil moisture monitoring. ADBU J Eng Technol 6(2):11–16

    Google Scholar 

  • Sun, Z. J., & Young, G. D. (2001). A Cost Effective Soil Moisture Instrument Based on Time-Domain Transmission Measurement. In Int. Symp. and Worksh. on Time Domain Reflectometry for Innovative Geotechnical Applications (pp. 5–7). Evanston: IL. Retrieved from http://www.civil.northwestern.edu/people/dowding/tdr/tdr2001/reviewers/hardware/sun2/Sun2.pdf

  • Sun ZJ, Young GD, Mcfarlane RA, Chambers BM (2000) The effect of soil electrical conductivity on moisture determination using time-domain reflectometry in sandy soil. Can J Soil Sci 80(1):13–22

    Article  Google Scholar 

  • Szerement J, Woszczyk A, Szypłowska A, Kafarski M, Lewandowski A, Wilczek A, Skierucha W (2019) A seven-rod dielectric sensor for determination of soil moisture in well-defined sample volumes. Sensors 29(1646):1–12. https://doi.org/10.3390/s19071646

    Article  Google Scholar 

  • Tan WY, Then YL, Lew YL, Tay FS (2019) Newly calibrated analytical models for soil moisture content and pH value by low-cost YL-69 hygrometer sensor. Measurement 134:166–178

    Article  Google Scholar 

  • Tan, X., Zhang, L., & He, C. (2020). Applicability of cosmic-ray neutron sensor for measuring soil moisture at the agricultural-pastoral ecotone in northwest China. Science China Earth Sciences, 63, 1730–1744. https://doi.org/10.1007/s11430-020-9650-2

  • Taqi AH, Khalil HJ (2017) An investigation on gamma attenuation of soil and oil-soil samples. J Radiat Res Appl Sci 10(3):252–261. https://doi.org/10.1016/j.jrras.2017.05.008

    Article  Google Scholar 

  • Taruno WP, Baidillah MR, Sulaiman RI, Ihsan MF, Fatmi SE (2013) 4D brain activity scanner using electrical capacitance volume tomography (ECVT). In 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 1006–1009

  • Terefe T, Mariscal-sancho I, Peregrina F, Espejo R (2008) Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma 143:273–280. https://doi.org/10.1016/j.geoderma.2007.11.018

    Article  Google Scholar 

  • The Joint FAO/IAEA Divison of Nuclear Techniques in Food and Agriculture. (2017). Cosmic Ray Neutron Sensing: Use, Calibration and Validation for Soil Moisture Estimation. IAEA-TECDOC-1809. Vienna: IAEA. (pp. 1-50) Retrieved from https://www.iaea.org/publications/11097/cosmic-ray-neutron-sensing-use-calibration-and-validation-for-soil-moisture-estimation

  • The Joint FAO/IAEA Divison of Nuclear Techniques in Food and Agriculture. (2018). Soil Moisture Mapping with a Portable Cosmic Ray Neutron Sensor. IAEA-TECDOC-1845. Vienna: IAEA. (pp. 1–58) Retrieved from https://www.iaea.org/publications/12357/soil-moisture-mapping-with-a-portable-cosmic-ray-neutron-sensor

  • Tian Z, Li Z, Liu G, Li B, Ren T (2016) Soil water content determination with cosmic-ray neutron sensor: correcting aboveground hydrogen effects with thermal / fast neutron ratio. J Hydrol 540:923–933. https://doi.org/10.1016/j.jhydrol.2016.07.004

    Article  Google Scholar 

  • Tillman MA, Cicero SM (1996) Comparison between the oven and the Karl Fischer methods for the determination of the moisture. Sci Agric 53(1):67–72

    Article  Google Scholar 

  • Toker NK (2002) Improvements and reliability of MIT tensiometers and studies on soil moisture characteristic curves. Massachusetts Institute of Technology, Cambridge

  • Toll DG, Asquith JD, Fraser A, Hassan AA, Liu G, Lourenco SD, … Stirling R (2015) Tensiometer techniques for determining soil water retention curves. Asia-Pacific Conference on Unsaturated Soil, (June). https://doi.org/10.1201/b19248-4

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582

    Article  Google Scholar 

  • Topp GC, Lapen DR, Young GD (2001) Evaluation of shaft-mounted TDT readings in disturbed and undisturbed media. In Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications. Infrastructure Technology Institute. Illinois. Retrieved from http://www.iti.northwestern.edu/tdr/tdr2001/proceedings/%0A. Accessed 10 Jul 2020

  • Toth B, Weynants M, Nemes A, Mako A, Bilas G, Toth G (2015) New generation of hydraulic pedotransfer functions. Eur J Soil Scie 66(January):226–238. https://doi.org/10.1111/ejss.12192

    Article  Google Scholar 

  • Unger PW, Jones OR (1998) Long-term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil Tillage Res 45:39–57. https://doi.org/10.1016/S0167-1987(97)00068-8

    Article  Google Scholar 

  • US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. SDA Handbook 60. U.S. Government Printing Office, Washington, DC

  • USGS (2019) Where is Earth’s water? Retrieved from https://www.usgs.gov/special-topic/water-science-school/science/where-earths-water?qt-science_center_objects=0#qt-science_center_objects. Accessed 30 Jul 2020

  • van der Heijden GHA, Pel L, Kopinga K (2011) Moisture transport and dehydration in heated gypsum, an NMR study. In 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, pp. 181–188

  • Vather T, Everson C, Mengistu M, Franz T (2018) Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture. S Afr J Sci 114(7):1–9

    Google Scholar 

  • Vather T, Everson C, Franz TE (2019) Calibration and validation of the cosmic ray neutron rover for soil water mapping within two South African land classes. Hydrology 6(65):1–21

    Google Scholar 

  • Vergnano A, Godio A, Maria C, Chiampo F, Bosco F, Ru B (2019) Time-Domain reflectometry (TDR) monitoring at a lab scale of aerobic biological processes in a soil contaminated by diesel oil. Appl Sci 9(5487):1–17

    Google Scholar 

  • Visvalingam M, Tandy JD (1972) The neutron method for measuring soil moisture content - a review. J Soil Sci 23(4):499–510

    Article  Google Scholar 

  • Voltz M, Dagès C, Prévot L, A, B (2018) Soils and Regulation of the Hydrological Cycle. In J. Berthelin, C. Valentin, & J. C. Munch (Eds.), Soils as a Key Component of the Critical Zone (pp. 59–80). ISTE Ltd and John Wiley & Sons, Inc. https://doi.org/10.1002/9781119438069.ch3

  • Vomocil JA (1954) In situ measurement of soil bulk density. Agric Eng 35:651–654

    Google Scholar 

  • Voss A, Hosseini P, Pour-ghaz M, Vauhkonen M, Seppänen A (2019) Three-dimensional electrical capacitance tomography – a tool for characterizing moisture transport properties of cement-based materials. Mater Des 181:107967. https://doi.org/10.1016/j.matdes.2019.107967

    Article  Google Scholar 

  • Wagner W, Blöschl G, Pampaloni P, Calvet J, Bizzarri B, Wigneron J-P, Kerr Y (2007) Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nord Hydrol 38(1):1–20. https://doi.org/10.2166/nh.2007.029

    Article  Google Scholar 

  • Walker JP, Willgoose GR, Kalma JD (2004) In situ measurement of soil moisture: a comparison of techniques. J Hydrol 293(1):85–99. https://doi.org/10.1016/j.jhydrol.2004.01.008

    Article  Google Scholar 

  • Wallhan EF (1939) Use of tensiometers for soil moisture measurement in ecological research. Ecology 20(3):403–412

    Article  Google Scholar 

  • Wang, C. H., Willis, D. L., & Loveland, W. D. (1975). Characteristics of ionizing radiation. In Radiotracer Methodology in the Biological Environmental and Physical Sciences (pp. 39–74). ACS Publications. https://doi.org/doi.org/10.1021/ed053pA468.1

  • Wang F, Marashdeh Q, Fan L, Warsito W (2010) Electrical capacitance volume tomography: design and applications. Sensors 10(3):1890–1917. https://doi.org/10.3390/s100301890

    Article  Google Scholar 

  • Wang Q, Wang M, Wei K, Qiu C (2017) Visualization of gas-oil-water flow in horizontal pipeline using dual-modality electrical tomographic systems. IEEE Sensors J:1–10. https://doi.org/10.1109/JSEN.2017.2714686

  • Wang E, Smith CJ, Macdonald BCT, Hunt JR, Xing H, Denmead OT et al (2018a) Making sense of cosmic-ray soil moisture measurements and eddy covariance data with regard to crop water use and fi eld water balance. Agric Water Manag 204(December 2017):271–280. https://doi.org/10.1016/j.agwat.2018.04.017

    Article  Google Scholar 

  • Wang J, Xiao L, Lia G, Zhang Y, Guo L, Arns CH (2018b) Theoretical investigation of heterogeneous wettability in porous media using NMR. Sci Rep (August):1–14. https://doi.org/10.1038/s41598-018-31803-w

  • Warsito W, Marashdeh Q, Fan L (2007) Electrical capacitance volume tomography. IEEE Sensors J 7(4):525–535

    Article  Google Scholar 

  • Watanebe K, Wake T (2009) Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg Sci Technol 59(1):34–41

    Article  Google Scholar 

  • Wennemer CBMFM (2015) Volumetric thermo-elastic machine tool behavior. Prod Eng Res Dev 9:119–124. https://doi.org/10.1007/s11740-014-0584-5

    Article  Google Scholar 

  • Western AW, Grayson RB, Bschl G, Willgoose GR (1999) Observed spatial organization of soil moisture indices. Water Resour Res 35(3):797–810

    Article  Google Scholar 

  • Whalley WR, Dean TJ, Izzard P (1992) Evaluation of the capacitance technique as a method for dynamically measuring soil water content. J Agric Eng Res 52:147–155

    Article  Google Scholar 

  • Wijaya K, Nishimura T, Makoto K (2002) Estimation of bulk density of soil by using amplitude domain reflectometry (ADR) probe. In Proceedings, 17th World Congress of Soil Science

  • Wijaya K, Nishimura T, Kato M (2003) Estimation of dry bulk density of soil using amplitude domain reflectometry probe. J Jpn Soc Soil Phys 95:63-73 

    Google Scholar 

  • Will B (2011) Time domain transmission sensors for soil moisture measurements. In TELFOR 2011 - Proceedings of Papers, pp. 1–4. https://doi.org/10.1109/TELFOR.2011.6143881

  • Wilson TB, Diamond HJ, Kochendorfer J, Meyers TP, Wilson TB, Hall M et al (2020) Evaluating time domain reflectometry and coaxial impedance sensors for soil observations by the U.S. Climate Reference Network. Vadose Zone J 19(1):1–15. https://doi.org/10.1002/vzj2.20013

    Article  Google Scholar 

  • Wu X, Wang Q, Liu M (2014) In-situ soil moisture sensing: measurement scheduling and estimation using sparse sampling. ACM Trans Sens Netw 11:1–29. https://doi.org/10.1145/2629439

    Article  Google Scholar 

  • Wu J, Guo P, Shen S, He Y, Huang X, Xu Z (2019) Mini inside-out nuclear magnetic resonance sensor design for soil moisture measurements. Sensors 19(1682):1–11. https://doi.org/10.3390/s19071682

    Article  Google Scholar 

  • Yahaya O, Alexander O, Dirisu HO, Alhassan AI (2016) Calibration of Soil moisture measurement using PR2 moisture meter and gravimetric-based approaches. Anul 1:369–377

    Google Scholar 

  • Yang T, Ala M, Zhang Y, Wu J, Wang A (2018) Characteristics of soil moisture under different vegetation coverage in Horqin Sandy. PLoS One 13(6):3–6

    Article  Google Scholar 

  • Zazueta, F. S., & Xin, J. (1994). Soil moisture sensors. Bulletin 292 (Vol. 73). Gainesville: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences University of Florida. Retrieved from https://ufdc.ufl.edu/UF00008529/00001

  • Zerizghy MG, Van Rensburg LD, Anderson JJ (2013) Comparison of neutron scattering and DFM capacitance instruments in measuring soil water evaporation. Afr J Online 39(2):183–190

    Google Scholar 

  • Zhu Q, Liao K, Xu Y, Yang G, Wu S, Zhou S (2012) Monitoring and prediction of soil moisture spatial-temporal variations from a hydropedological perspective: a review. Soil Res 50(January):625–637. https://doi.org/10.1071/SR12228

    Article  Google Scholar 

  • Zreda M, Desilets D, Ferre TPA (2008) Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys Res Lett 35(November):1–5. https://doi.org/10.1029/2008GL035655

    Article  Google Scholar 

  • Zreda M, Shuttleworth WJ, Zeng X, Zweck C, Franz T (2012) COSMOS : the COsmic-ray Soil Moisture Observing System. Hydrol Earth Syst Sci 16(November):4079–4099. https://doi.org/10.5194/hess-16-4079-2012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mukhlisin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhlisin, M., Astuti, H.W., Wardihani, E.D. et al. Techniques for ground-based soil moisture measurement: a detailed overview. Arab J Geosci 14, 2032 (2021). https://doi.org/10.1007/s12517-021-08263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08263-0

Keywords

Navigation