Skip to main content

Landslide susceptibility assessment using analytic hierarchy process and weight of evidence methods in parts of the Rif chain (northernmost Morocco)

Abstract

The coastaline between Tetouan and Bou Ahmed and its hinterlands, which is known for its frequency and variety of landslides at Morocco scale. In this context, the geological complexity, the steep terrain morphology, the fairly abundant rainfall, seismic activity…, etc. increase sensitivity and susceptibility to landslides. The consequences generated are extremely large on the components such as road networks, electricity networks, water lines, housing, arable land, forest areas, and coastal areas. In this study, we propose analytic hierarchy process (AHP) and weight of evidence (WofE) methods, to highlight and target potential areas vulnerable to risks of landslides to minimize the damages produced by these phenomena. Eleven parameters controlling the genesis and development of landslides in the order of priority are the following: elevation, slope, lithology, land use, rainfall, proximity to faults, proximity to streams, curvature, aspect, shaded/relief, and proximity to the road. The efficiency testing of landslide susceptibility maps showed a good precision for both AHP and WofE models by utilizing the ROC/AUC method. The comparison between validation processes indicates that WofE method is more accurate in prediction than the AHP method. The output landslide susceptibility maps can constitute a basic document for planners, managers, and regulatory bodies responsible for managing and mitigating landslide incidents at scale of area, especially with increasing housing and large projects within an unstable mountainous area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Agliardi F, Crosta GB, Zanchi A (2001) Structural constrains on deep-seated slope deformations kinematics. Eng Geol 59(1-2):83–102. https://doi.org/10.1016/S0013-7952(00)00066-1

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Frattini P (2012) Slow rockslope deformation. In: Clague JJ, Stead D (eds) Landslides types, mechanisms and modeling. Cambridge Univ Press, Cambridge, pp 207–221

    Chapter  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. B Eng Geol Environ 58(1):21–44

    Article  Google Scholar 

  • Althuwaynee OF. Pradhan B, Park,HJ, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21-36.

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1-2):15–31

    Article  Google Scholar 

  • Biçer ÇT, Ercanoglu M (2020) A semi-quantitative landslide risk assessment of central Kahramanmaraş City in the Eastern Mediterranean region of Turkey. Arab J Geosci 13(15):1–26

    Article  Google Scholar 

  • Brahim LA, Bousta M, Jemmah IA, El Hamdouni I, ElMahsani A, Abdelouafi A, Lallout I (2018) Landslide susceptibility mapping using AHP method and GIS in the peninsula of Tangier (Rif-northern morocco). In Matec Web of Conferences (Vol. 149, p. 02084). EDP Sciences

  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Article  Google Scholar 

  • Buwal B (1997) BRP: Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten. Bundesamt für Umwelt, Wald und Landschaft, Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bern und Biel

  • Chalouan A, Galindo-Zaldívar J, Bargach K, Jabaloy A, Ahmamou M, Ruano P, Akil M (2001) Deformaciones recientes en el frente de la Cordillera Rifena (Prerif, Marruecos). Geogaceta 29:40–43

    Google Scholar 

  • Crozier MJ (1984) Field assessment of slope instability. Slope instability:103–142

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165

    Article  Google Scholar 

  • Dramis F, Sorriso-Valvo M (1994) Deep-seated gravitational slope deformations, related landslides, and tectonics. Eng Geol 38(3-4):231–243

    Article  Google Scholar 

  • El Gharbaoui A (1980) La terre et l’homme dans la péninsule Tingitane. Test on the man and the natural environment in Rif Western. Dr Univ of Paris-Est Créteil Val de Marne. French

  • El Kharim Y (2002) Etude des mouvements de versants dans la région de Tétouan (Rif occidental): Inventaire, analyse et cartographie. These Dr es Sci Univ Abdelmalek Essaadi, Tétouan

  • EL Moutchou B (2014) Caractérisation morphosédimentaire, morphodynamique, géomorphologique et dynamique des versants du littoral méditerranéen marocain entre Fnideq et Kaa Asresse (Provinces de Tétouan et Chefchaouen, Maroc Nord Occidental). Thèse d’état, UAE, Tétouan.Tétouan. 305 p

  • Elmoulat M, Ait Brahim L (2018) Landslides susceptibility mapping using GIS and weights of evidence model in Tetouan-Ras-Mazari area (Northern Morocco). Geomat Nat Haz Risk 9(1):1306–1325

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41(6):720–730

    Article  Google Scholar 

  • Fares A (1994) Essai méthodologique de la cartographie des risques naturels lies aux mouvements de terrain application a l’aménagement de la ville de Taounate (Rif, Maroc), Dr Diss, Besançon

  • Flageollet JC (1989) Les mouvements de terrains et leur prévention. (éd.) Masson, série Géographie, Paris, 224 p

  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J (2019) Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens 11(2):196. https://doi.org/10.3390/rs11020196

    Article  Google Scholar 

  • Glade T, Crozier MJ (2005) Landslide hazard and risk: concluding comment and perspectives. Landslide hazard and risk. Wiley, Chichester, pp 767–774

    Book  Google Scholar 

  • Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129(3-4):376–386

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P, Galli M, Ardizzone F (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31(1-4):181–216

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112(1-2):42–66

    Article  Google Scholar 

  • Hadji R, Limani Y, Baghem M, Demdoum A (2013) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302:224–237

    Article  Google Scholar 

  • Hamed Y, Ahmadi R, Hadji R, Mokadem N, Dhia HB, Ali W (2014) Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: use of geochemical and isotopic indicators. Desalin Water Treat 52(10-12):1990–1996

    Article  Google Scholar 

  • He Q, Xu Z, Li S, Li R, Zhang S, Wang N, Chen W (2019) Novel entropy and rotation forest-based credal decision tree classifier for landslide susceptibility modeling. Entropy 21(2):106

    Article  Google Scholar 

  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Chen W (2018) Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci Total Environ 625:575–588

    Article  Google Scholar 

  • Iqbal J, Cui PENG, Hussain ML, Pourghasemi HR, Cheng DQ, Shah SU, Pradhan B (2021) Landslide susceptibility assessment along the Dubair-Dudishal section Of The Karakoram Higway, Northwestern Himalayas. Pakistan. Acta Geodyn Geomater 18(202):137–155. https://doi.org/10.13168/AGG.2021.0010

    Article  Google Scholar 

  • Jaafari A, Panahi M, Pham BT, Shahabi H, Bui DT, Rezaie F, Lee S (2019) Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena 175:430–445

    Article  Google Scholar 

  • Karim Z, Hadji R, Hamed Y (2019) GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotech Geol Eng 37(1):359–374

    Article  Google Scholar 

  • Kornprobst J (1974) Contribution à l’étude pétrographique et structurale de la zone interne du Rif (Maroc Septentrional). Notes et Memoirs de la Service Geologique de Maroc, 251, 256 pp.

  • Li X, Cheng X, Chen W, Chen G, Liu S (2015) Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms. Remote Sens 7(8):9705–9726

    Article  Google Scholar 

  • MATE/METL (1999) Plans de Prévention des Risques Naturels (PPR): Risques de Mouvements de Terrain, Ministère de l’Aménagement du Territoire et de l’Environnement, (MATE), Ministère de l’Equipement, des Transports et du Logement (METL), La Documentation Française, Paris.

  • Millies-Lacroix A (1965) L’instabilité des versants dans le domaine rifain. GDYAC 15(7-8-9):97–109

    Google Scholar 

  • Naidu S, Sajinkumar KS, Oommen T, Anuja VJ, Samuel RA, Muraleedharan C (2018) Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci Front 9(6):1871–1882

    Article  Google Scholar 

  • Nohani E, Moharrami M, Sharafi S, Khosravi K, Pradhan B, Pham BT, Melesse AM (2019) Landslide susceptibility mapping using different GIS-based bivariate models. Water-Sui 11(7):1402

    Google Scholar 

  • Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276

    Article  Google Scholar 

  • Pamela, Sadisun IA, Arifianti Y (2018) Weights of evidence method for landslide susceptibility mapping in Takengon, Central Aceh, Indonesia. IOP Conf Ser Earth Environ Sci 118(1)

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464

    Article  Google Scholar 

  • Pham BT, Khosravi K, Prakash I (2017) Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India. Environ Process 4(3):711–730

    Article  Google Scholar 

  • Pham BT, Bui DT, Prakash I (2018) Application of classification and regression trees for spatial prediction of rainfall-induced shallow landslides in the Uttarakhand area (India) using GIS. In Climate change, extreme events and disaster risk reduction (pp. 159-170). Springer, Cham

  • Popesc ME (1994) A suggested method for reporting landslide causes. Geol B Assoc Int Geol Ing 50(1):71–74

    Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Aghda SF (2013a) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69(1):749–779

    Article  Google Scholar 

  • Pourghasemi H, Pradhan B, Gokceoglu C, Moezzi KD (2013b) A comparative assessment of prediction capabilities of Dempster-Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geomat Nat Hazards Risk 4(2):93–118

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2013c) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed Iran. Arab J Geosci 6(7):2351–2365

    Article  Google Scholar 

  • Pradhan B (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320

    Article  Google Scholar 

  • Pradhan B (2011) Manifestation of an advanced fuzzy logic model coupled with geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ Ecol Stat 18(3):471–493

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51(1):350–365

    Article  Google Scholar 

  • Pradhan B, Lee S (2010a) Regional landslide susceptibility analysis using back-propagation neural networks model at Cameron Highland, Malaysia. Landslides 7(1):13–30

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054

    Article  Google Scholar 

  • Prokos H, Baba H, LóCzy D, El Kharim Y (2016) Geomorphological hazards in a Mediterranean mountain environment-example of Tétouan, Morocco. HunGeoBull 65(3):283–295

    Article  Google Scholar 

  • Rasyid AR, Bhandary NP, Yatabe R (2016) Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron Disasters 3(1):19

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vite JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115(1-2):172–187

    Article  Google Scholar 

  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, KumamotoT AA (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7(2):725–742

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process, planning, priority. Resource allocation. RWS publications, USA

  • Saha S, Saha A, Hembram TK, Pradhan B, Alamri AM (2020) Evaluating the performance of individual and novel ensemble of machine learning and statistical models for landslide susceptibility assessment at Rudraprayag District of Garhwal Himalaya. Appl Sci 10(11):3772

    Article  Google Scholar 

  • Sidle RC, Ochiai H (2007) Landslides processes, prediction, and land use water resources monograph 18. Natural Resources Forum 31:322–326

    Article  Google Scholar 

  • Song KY, Oh HJ, Choi J, Park I, Lee C, Lee S (2012) Prediction of landslides using ASTER imagery and data mining models. Adv Space Res 49(5):978–993

    Article  Google Scholar 

  • Thapa D, Bhandari BP (2019) GIS-based frequency ratio method for identification of potential landslide susceptible area in the Siwalik Zone of Chatara-Barahakshetra Section, Nepal. Open J of Geol 9(12):873–896

    Article  Google Scholar 

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76(3-4):392–410

    Article  Google Scholar 

  • Van Den Eeckhaut M, Kerle N, Poesen J, Hervás J (2012) Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 173:30–42

    Article  Google Scholar 

  • Van Westen CJ (2000) The modelling of landslide hazards using GIS. Surv Geophys 21(2-3):241–255

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TW, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? B Eng geol Environ 65(2):167–184

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Special Report 176:11–33

    Google Scholar 

  • Voogd H (1983) Evaluation multicritère pour la planification urbaine et régionale. Londres: Pion.

  • Wildi W (1983) La chaîne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie et évolution du Trias au Miocène. Rev Geogr Phys Geol 24(3):201–297

    Google Scholar 

  • Wu Z, Wu Y, Yang Y, Chen F, Zhang N, Ke Y, Li W (2017) A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models. Arab J Geosci 10(8):187

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Earth Environ Sci 61(4):821–836

    Article  Google Scholar 

  • Zhang W, Goh AT, Zhang Y, Chen Y, Xiao Y (2015) Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Eng Geol 188:29–37

    Article  Google Scholar 

  • Zorn M, Komac B (2007) Probability modelling of landslide hazard. Acta Geogr Slov 47(2):139–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazzak Es-smairi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Es-smairi, A., El Moutchou, B. & Touhami, A.E.O. Landslide susceptibility assessment using analytic hierarchy process and weight of evidence methods in parts of the Rif chain (northernmost Morocco). Arab J Geosci 14, 1346 (2021). https://doi.org/10.1007/s12517-021-07660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07660-9

Keywords

  • Morocco
  • Landslides
  • Damages
  • Analytic hierarchy process (AHP)
  • Weight of evidence (WofE)
  • ROC/AUC method