Skip to main content
Log in

Clay mineralogy and geochemistry of pelitic rocks in the middle Permian Fanjiatun formation, East Changchun, China: implications for metamorphism and provenance

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Metamorphic pressure–temperature conditions and sedimentary provenance were determined for the middle Permian Fanjiatun Formation in east Changchun, China, based on clay mineralogy, vitrinite reflectance and geochemical data. The pelitic rocks in the Fanjiatun Formation contain illite + kaolinite + chlorite ± mixed-layer chlorite/smectite and detrital quartz + plagioclase. Illite crystallinity in the formation varies from 0.38 to 0.49 (average = 0.44), and consists dominantly of the 2M1 and mixed 2M1 and 1Md polytypes. The illite b0 dimension is 8.9860–9.0130 Å (average = 9.0010 Å), indicating the Fanjiatun Formation experienced very-low-grade metamorphism at <1.5 kbar. The metamorphic temperatures obtained based on vitrinite reflectance are 191–308 °C, indicating the formation experienced anchizone-zone facies metamorphism. Al2O3/TiO2 ratios vary from 23.93 to 24.22 (average = 24.11), and the chemical index of alteration is 64–69 (average = 67). Rare earth element contents are high and exhibit enrichment in light rare earth elements and negative Eu anomalies. Trace element characteristics indicate that the source of the pelitic rocks was moderately weathered silicic rocks. The sediments were deposited in a reducing continental setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldega L, Botti F, Corrado S (2007) Clay mineral assemblages and vitrinite reflectance in the Laga Basin (central apenines, Italy): what do they record? Clay Clay Miner 55(5):504–518

    Article  Google Scholar 

  • Algeo TJ (2004) Can marine anoxic events draw down the trace element inventory of seawater? Geology 32:1057–1060

    Article  Google Scholar 

  • Árkai P (2002) Phyllosilicates in very low-grade metamorphism transformation to micas. Rev Mineral Geochem 46(1):463–478

    Article  Google Scholar 

  • Árkai P, Tóth NM (1983) Illite crystallinity: combined effects of domain size and lattice distortion. Acta Geol Hung 26:341–358

    Google Scholar 

  • Barker CE, Goldstein RH (1990) Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 18(10):1003–1006

    Article  Google Scholar 

  • Barker CE, Pawlewicz MJ (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. Lect Notes Earth Sci 5:79–81

    Article  Google Scholar 

  • Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay PK, Dow WG (eds) Vitrinite reflectance as a matruity parameter: applications and limitations, ACS Symp series, vol 570, pp 216–229

    Chapter  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91(6):611–627

    Article  Google Scholar 

  • Bhatia MR (1985) Rare earth element geochemistry of Australian Paleozoic greywackes and mudrocks: provenance and tectronic control. Sediment Geol 45:97–113

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of grey wackes and tectonic setting discrimination of sedimentary basins. Contrib Minerla Petrol 92:181–193

    Article  Google Scholar 

  • Bi XM, Mo XX (2004) Transition from diagenesis to low-grade metamorphism and related minerals and energy resources. Earth Scince Frontiers 11(1):287–294

    Google Scholar 

  • Brime B, Frutos P, Bringas P, Nieto A, Ballesteros MP, Frutos G (2003) Comparative pharmacokinetics and safety of a novel lyophilized amphotericin b lecithin-based oil-water microemulsion and amphotericin b deoxycholate in animal models. J Antimicrob Chemother 52(1):103–109

    Article  Google Scholar 

  • Bureau of Geology and Mineral Resources of Jilin Province (1988) Regional geology of Jilin province: Geological Publishing House

  • Caillère S, Hénin S (1982) Minéralogie des argiles. Masson Soil Science 98(3):208

    Article  Google Scholar 

  • Chang HJ, Chu XL, Feng LJ, Huang J, Zhang QR (2009) Redos sensitive trace elements as paleoenvironments proxies. Geological Review 55(1):91–99

    Google Scholar 

  • Chen MY, Jin W, Zheng CQ (2009) Identification manual of metamorphic rocks. Geological Publishing House:36–37

  • Cheng YQ (1994) Introduction of regional geology of China. Geological Publishing House:85–89

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59:2919–2940

    Article  Google Scholar 

  • Culler RL (1995) The controls on the major-and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the wet mountain region, Colorado, USA. Chem Geol 123:107–131

    Article  Google Scholar 

  • Dana JD, Hurlbut CS (1959) Manual of mineralogy. Wiley

  • Degens ET, Willians EG, Keith ML (1957) Environmental studies of carboniferous sediments. PartI. Geochemical criteria for differentiating marine and fresh-water shales. Assoc Petrol Geol Bull 41:2427–2455

    Google Scholar 

  • Degens ET, Williams EG, Keith ML (1957) Geochemical criteria for differentiating marine from fresh-water shales, Part 1 of Environmental studies of Carboniferous sediments [Pennsylvania]. Child Development 66(1):80–97

    Google Scholar 

  • Cloos Mark (1983) Comparative Study of Melange Matrix and Metashales from the Franciscan Subduction Complex With the Basal Great Valley Sequence. California. The Journal of Geology 91(3):291–306

    Article  Google Scholar 

  • Dong SB (1986a) Metamorphism and crustal evolution in China. Geological Publishing House, Bejing, pp 1–233

    Google Scholar 

  • Dong SB, Shen QH, Sun DZ, Lu LZ (1986b) Specification of metamorphic geology map of China. Geological Publishing House, Bejing, pp 1–37

    Google Scholar 

  • Drits VA, Srodon J, Eberl DD (1997) XRD measurements of mean crystallite thickness of illite and illite/smectite: Reapprasial of the Kübler index and the Scherrer equation. Clays Clay Minerals 45:461–475

    Article  Google Scholar 

  • Dunoyer de Segonzac G, Bernoulli D (1976) Diagenese et métamorphism des argiles dans le Rhétien Sud–alpin et Austro–alpin(lombardie et Grisons). Bull Soc Géol France 18:1283–1293

    Article  Google Scholar 

  • Essene EJ, Peacor DR (1995) Clay mineral thermometry–a critical perspective. Clay Clay Miner 43:540–553

    Article  Google Scholar 

  • Frey M, (1987) Very low-grade metamorphism of clastic sedimentary rocks. In: Low temperature metamorphism (ed. Frey M). Blackie and Son Ltd. Glasgow, 9–58

  • Frey M, Robinson D (1999) Low–grade metamorphism. Blackwell Science, Oxford, pp 10–226

    Google Scholar 

  • Frings K, Lutz R, Wall H, Warr LN (2004) Coalification history of the Stephanian Ciñera-Matallana pull-apart basin, NW Spain: combining anisotropy of vitrinite reflectance and thermal modelling. Int J Earth Sci (Geol Rundsch) 93:92–106

    Article  Google Scholar 

  • Geng YS, Shen QH, Du LL, SongHX (2016) Regional metamorphism and continental groeth and assembly in China. Acta Petrol Sin 32(9):2579–2608

    Google Scholar 

  • Girty GH, Rideg DL, Knaack C (1996) Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sediment Res 66(1):107–118

    Google Scholar 

  • Grathoff GH, Moore DM (1996) Illite polytype quantification using wildfire© calculated x-ray diffraction patterns. Clays Clay Minerals 44(6):835–842

    Article  Google Scholar 

  • Greenwood HJ (1976) Metamorphism at moderate temperatures and pressures. In: Bailey DK, Macdonald R (eds) The evolution of the crystalline rocks. Academic Press, New York, pp 187–259

    Google Scholar 

  • Grubb SMB, Peacor DR, Jiang WT (1991) Transmission electron microscope observations of illite polytypism. Clays Clay Minerals 39:540–550

    Article  Google Scholar 

  • Guidotti CV, Sassi FP (1986) Classification and correlation of metamorphic facies series by means of muscovite b0 data from low–grade metapelites. Neues Jb Mineral Abh 153:363–380

    Google Scholar 

  • Guidotti CV, Sassi FP, Blencoe JG (1989) Compositional controls on the a and b cell dimensions of 2M1 muscovite. Euro Miner 1:71–84

    Article  Google Scholar 

  • Harder H, (1974) Boron, Sections B-O. In Handbook of Geochemistry (ed. K.A. Wedepohl) Vol. II/I. Springer-Verlag

  • Horsifield B, Rüllktter J (1994) Diagenesis catagencsis and metagenesis of organic matter. In: Magoon LB and Dow DG(eds.). The petroleum system- from source to trap. AAPG Mem 60:189–199

    Google Scholar 

  • Hower J, Eslinger EV, Hower ME, Perry EA (1976) Mechanisms of burial metamorphism of argillaceous sediment: 1.Mineralogical and chemical evidence. Geol Soc Amer Bull 87:725–737

    Article  Google Scholar 

  • Hu DQ, Yu JJ (2009) Study of illite in the upper Paleozoic, in northeastern inner Monggolia. Acta Petrol Sin 25(8):2017–2022

    Google Scholar 

  • Hu DQ, Hong Y, Yu JJ (2010) Genetic Chariciterics of Illite in the Permo-carboniferous, in East Jilin Province. Journal of Jilin Univenity (Earth Science Edition) 40(5):1035–1040

    Google Scholar 

  • Hu DQ, Liu Y, Hong Y, Xie XT (2011) Research of coexisting clay minerals in the upper Paleozoic argillaceous rocks in Northeast China. Journal of Jilin Univenity (Earth Science Edition) 41(5):1458–1465

    Google Scholar 

  • Hu DQ, Han CY, Ma R, Liu Y, Wang J (2012) The very low grade metamorphism in the upper Paleozoic in Xinlingol area of Inner Mongolia, NE China: evidence from studies of illite and vitrinite reflectance. Acta Petrol Sin 28(9):3042–3305

    Google Scholar 

  • Hu DQ, Li Y, Zhan NC, Zhu ZP, Dong QS, Ma R (2016) Reprint of very low-grade metamorphism of the upper permian linxi formation from the southern da xing'an mountains, ne China: constraints from clay mineral genesis. Appl Clay Sci 119(1):67–73

    Article  Google Scholar 

  • Hu DQ, Zhan NC, Zhang JT, Yang L, Sun GS (2018) Diagenesis and very low-grade metamorphism of the upper permian yangjiagou formation in eastern Changchun, China: evidence from clay mineral geothermobarometers. Acta Geologica Sinica (English edition) 92(3):1053–1062

    Article  Google Scholar 

  • Huang WL, Longo JM, Pevear DR (1993) An experimentally derived kinetic model for smectite-to-illite conversition and its use as a geothermometer. Clay Clay Miner 41:162–177

    Article  Google Scholar 

  • Jiang WT, Peacor D, Essene EJ (1990) Transmission electron microscopic study of coexisting pyrophyllite and muscovite: direct evidence for the metastability of illite. Clay Clay Miner 38:225–240

    Article  Google Scholar 

  • Jiang WT, Peacor D, Essene EJ (1994) Analytical and transmission electron microscopic study of clay minerals in sandston of Kettleman north Dome,California:implications for the metastability of illite. Clay Clay Miner 42:35–45

    Article  Google Scholar 

  • Jones BJ, Manning AC (1994) Comparison of geochemical iindices used fro the interpretation of palaeoredox conditions in ancient mudstones. Palaeogeogr Palaeoclimatol Palaeoecol 111:111–129

    Google Scholar 

  • Kan ZZ, Liang B, Wang QW, Zhu B (2006) Geochemistry of the Shaximiao formation in a dinosaur fossil site, Guangyuan, Sichuan, and its implications for the source area and paleoweathering. Geol China 33(5):532–595

    Google Scholar 

  • Kemp AES (1985) Low-grade metamorphism and accretion tectonics: southern uplands terrain, Scotland. Mineral Mag 49(352):335–344

    Article  Google Scholar 

  • Kimura H, Watanabe Y (2001) Ocean anoxia at the Precambrian-Cambrian boundary. Geology 29:995–998

    Article  Google Scholar 

  • Kisch HJ (1991) Illite crystallinity: recommendations on sample preparation, x-ray diffraction settings, and interlaboratory samples. J Metamorph Geol 9(6):665–670

    Article  Google Scholar 

  • Kronberg BI, Nesbitt HW (1981) Quantification of weathering soil geochemistry and soil fertility. J Soil Sci 32:453–459

    Article  Google Scholar 

  • Kübler B, (1967a) La cristallinité de l’illite et les zones tout á fait supérieures du métamorphism.in:Etages Tectoniques, Colloque de Neuchâtel.Université Neuchâtel, à la Baconnière, Neuchátel, Switzerland, 105–121

  • Kübler B (1967b) Anchimetamorphisme et schistosité. Bull Centre Rech Pau-SNPA:259–278

  • Kübler B (1968) Evaluation quantitative du métamorphism par la cristallinité de l’illite. Bull Centre Rech Pau–SNPA 2:385–397

    Google Scholar 

  • Kurt B, Rodney G, (2011) Petrogenesis of Metamorphic Rocks. Springer Heidelberg Dordrecht London New York. 256–257

  • Le Maitre RW (1976) The chemical variability of some common igneous rocks. J Petrol 4:589–698

    Article  Google Scholar 

  • Lev SM, Mclennan SM, Meyers WJ (1998) Apetrographic approach for evaluating trace element mobility in a blackshale. Journal of Sedimentray Research 68:970–980

    Article  Google Scholar 

  • Li CY, Tang YQ (1983) Some problems on subdivision of palaeo-plates in Asia. Acta Geol Sin:3–12

  • Lippmann F, (1981) Stabillity diagrams involving clay minerals. In: 8th conference on clay kaolinite-kaolinite-mineralogy and Petrology Teplice. 1979 (ed. J Konata) University of Karlova, Prague, Czechoslovakia, 153–171

  • Lippmann F, (1982) The thermodynamic status of clay minerals. in:Proceedings of the 7th International Clay Conference, Bologna,Pavia, 1981(eds Olphen HV, Veniale F) Elsevier, New York, 475–485

  • Liu G, Zhou DS (2007) Application of microelements analysis in identifying sedimentary environment. Petroleum Geology Experiment 29(3):307–314

    Google Scholar 

  • Lyons TW, Werne JP, Hollander DJ, Murray RW (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratio across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem Geol 195:131–157

    Article  Google Scholar 

  • Maxwell DT, Hower J (1967) High grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series. Am Mineral 52:843–857

    Google Scholar 

  • Mclennan SM, (1989) Rare earth element in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR and Mckay GA(eds). Geochemistry and Mineralogy of Rare Earth elements. Review Mineralogy. 21: 169–200

  • Mclennan SM (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • Mclennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–21

    Article  Google Scholar 

  • Merriman RJ, Roberts B, Peacor DR (1990) A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, U.K. Contrib Mineral Petrol 106:27–40

    Article  Google Scholar 

  • Merrriman RJ, Frey M (1999) Patterns of very low-grade metamorphism in metapelitic rocks. In: Frey M, Robinson D (eds) Low-grade Mtamorphism. Blackwell Science, Oxford, pp 61–107

    Google Scholar 

  • Michael PD, Sébastien P, Wolfgang F, Tony R (2012) Very low-grade metamorphism of Rheno-Hercynian allochthons(Variscides, Germany): facts and tectonic consequences. Int J Earth Sci 101(5):1229–1252

    Article  Google Scholar 

  • Miller EK, Blum JD, Friedland AJ (1993) Determination of soilex-chanheable-cation loss and weathering rates using Sr isotope. Nature 362:438–441

    Article  Google Scholar 

  • Mullis J, Wolf M, Ferreiro, Mählmann R (2001) Temperature determination through fluid inclusion microthermometry and vitrinite reflectance values in the Diagenetic-and- Anchi- Zones. Conf. Abstr. (EUG XI, Strassbourg), 6: 230

  • Nesbitt HW, Young GM (1982) Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–147

    Article  Google Scholar 

  • Nieto F, Sánchez Navas A (1994) A comparative XRD and TEM study of the physical meaning of the white mica ‘crystallinity’ index. Eur J Mineral 6:611–621

    Article  Google Scholar 

  • Noten KV, Muchez P, Sintubin M (2011) Stress-state evolution of the brittle upper crust during compressional tectonic inversion as defined by successive quartz vein types (high-Ardenne slate belt, Germany). J Geol Soc 168:407–422

    Article  Google Scholar 

  • Padan A, Kisch HJ, Shagam R (1982) Use of the lattice parameter b0 of dioctahedral illite/muscovite for the characterization of P/Tgradients of incipient metamorphism. Contrib Mineral Petrol 17(1):1925–1929

    Google Scholar 

  • Pollastro RM (1990) The illite/smectite geothermometer-concepts, methodology, and application to basin history and hydrocarbon generation. Rocky Mountain:1–18

  • Ren YS, Niu JP, Wang H, Lei E (2009) LA-ICP-MS zircon U-Pb age and its geological significance of tungsten–bearing mengjialing granitic intrusion in Siping area, Jilin Province. J Mineral Petrol 29(3):100–105

    Google Scholar 

  • Riboulleau A, Baudin F, Deconinck JF, Derenne S, Largeau C, Tribovillard N (2003) Depositional conditions and organic matter preservation path ways in an epicontinental environment: the upper Jurassic Kashpir oil Shales(Volga Basin, Russia). Palaeogeogr Palaeoclimatol Palaeoecol 197:171–197

    Article  Google Scholar 

  • Rimmer SM (2004) Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin(USA). Chem Geol 2004(206):373–391

    Article  Google Scholar 

  • Rimmer SM, Yoksoulian LE, Hower JC (2009) Anatomy of an intruded coal, I: effect of contact metamorphism on whole-coal geochemistry, Springfield (no. 5) (Pennsylvanian) coal, Illinois Basin. Int J Coal Geol 79:74–82

    Article  Google Scholar 

  • Robinson D, Bevins RE (1986) Incipient metamorphism in the lower palaeozoic marginal basin of wales. J Metamorph Geol 4(1):101–103

    Article  Google Scholar 

  • Rogers JJW, Adams JAS, (1976) Handbook of Thorium and Uranium Geochemistry. Beijing: Atomic Press(Chinese version)

  • Roser BP, Korsch RJ (1986) Determiantion of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Sageman BB, Murphy AE, Werne JP, Vere Straeten CA, Hollander DJ, Lyons TW (2003) A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, middle upper Devonian, Appalachian Basin. Chem Geol 195:229–273

    Article  Google Scholar 

  • Savoy LE, Stevenson RK, Mounoy EW (2000) Provenance of upper Devonian-lower carboniferous Miogeoclinal strata, Southeastern Canadian Cordillera: Link between tectonics and sedimentation. Journal of Sedimentary Research 70:181–193

    Article  Google Scholar 

  • Sébastien P, Ghislain T (2012) Very low-grade metamorphism in the Para-autochtonous sedimentary cover of the Pelvoux massif (Western Alps, France). Swiss J Geosci 105(2):235–247

    Article  Google Scholar 

  • Sengör AMC, Natal'In BA, Burtman VS (1993) Evolution of the altaid tectonic collage and palaeozoic crustal growth in eurasia. Nature 364(6435):299–307

    Article  Google Scholar 

  • Shen QH, Geng YS (2009) Review on the classification of metamorphism types and suggestion of a new tentative classification. Acta Petrol Sin 25(8):1737–1748

    Google Scholar 

  • Shi JY, Wang BS, Zhang LJ, Hong ZQ (1988) Study on diagenesis of organic matter in immature rocks. Org Geochem 13(4–6):869–874

    Google Scholar 

  • Stasiuk LD, Lockhartb GD, Nassichuk WW, Carlson JA (1999) Thermal maturity evaluation of dispersed organic matter inclusions from kimberlite pipes, lac de Gras, Northwest Territories, Canada. Int J Coal Geol 40:1–25

    Article  Google Scholar 

  • Sun DY, Wu FY, Gao S, Lu XP (2005) Confirmation of two episodes of A-type granite emplacement during late Triassic and early Jurassic in the Central Jilin Province, and their constraints on the structural pattern of eastern Jilin–Heilongjiang area, China. Earth science frontiers 12(2):263–275

    Google Scholar 

  • Sweeney JJ, Brunham AK (1990) Evalution of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 10(10):1559–1570

    Google Scholar 

  • Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford, p 312

    Google Scholar 

  • Teichmuller M (1987a) Recent advances in coalification studies and their application to geology. In: Scott AC (ed) Coal and coal-bearing strata: recent advances, Geol Soc Spec Publ, vol 32, pp 127–169

    Google Scholar 

  • Teichmuller M (1987b) Organic material and very low-grademetamorphism. In: Frey M (ed) Low-temperature metamorphism. Blackie & Son, Glasgow, pp 114–161

    Google Scholar 

  • Uysal IT, Mory AJ (2005) Clay mineralogical, geochemical and isotopic tracing of the evolution of the woodleigh impact structure, southern carnarvon basin, Western Australia. Contrib Mineral Petrol 149(6):576–590

    Article  Google Scholar 

  • Velde B (1965) Experimental determination of muscovite polymorphs stabilite. American Mineral 50:436–449

    Google Scholar 

  • Walker CT (1968) Evolution of boron as a paleosalinity indicator and its applications to offshore prospects. Amer Assoc Petrol Geol Bull 52:751–766

    Google Scholar 

  • Walker JR (1993) Chlorite polytype geothermometry. Clays Clay Minerals 41:260–267

    Article  Google Scholar 

  • Wang AH (1996) Discriminant effect of sedimentary environment by the Sr/Ba ratio of different exising forms. Acta Sediment to Logica Sinica 14(004):168–173

    Google Scholar 

  • Wang HJ., Zhou J, Xu QS, Liu CX, Zhu MX, (2003) Very low-grade metamorphism of the meso-neoproterozoic and the lower paleozoic along the profile from huangtu-dian to xianxi in the central-northern part of hunan province, china. Science in China Series D

  • Wang HJ, Tao XF, Rahn M (2007) Determination of constants C1-C14 in 14 equations of the relationships between the Kübler, Weaver and Weber indices and their applications. Geol J China Univ 13(3):561–565

    Google Scholar 

  • Wang CW, Jin W, Zhang XZ, Ma ZH, Chi XG, Liu YJ, Li N (2008) New understanding of the late Paleozoic tectonics in northeastern China and adjacent areas. J Stratigr 32(2):119–136

    Google Scholar 

  • Wang CW, Sun YW, Li N, LiuH ZGW (2009) On the distribution of late Palaeozoic strata in Northeast China. J Stratigr 33:56–61

    Google Scholar 

  • Wang HJ, Ma YS, Zhou J, Xu TT (2012) Diagenesis and very low grade metamorphism in a 7012m-deep well Hongcan 1, eastern Tibetan plateau. Swiss JGeosci 105(2):249–261

    Article  Google Scholar 

  • Wang HJ, Zhou Z, Wang L, Yuan L (2014) Anchimetamorphism and diagenesis of the Meso-Neoproterozoic and the lower Paleozoic along profile Yangjiaping in North Hunan Province, China. Acta Petrol Sin 30(10):3013–3020

    Google Scholar 

  • Weaver CE (1960) Possible uses of clay minerals in search for oil. Am Assoc Petrol Geol Bull 44:1505–1518

    Google Scholar 

  • Weber K, Pringle JR, Osborn M (1972) [1] measurement of molecular weights by electrophoresis on sds–acrylamide gel. Methods Enzymol 26:3–27

    Article  Google Scholar 

  • Werne JP, Lyons TW, Hollander DJ, Formolo MJ, Sinninghe Damsté JS, Sinninghe Damsté JS (2003) Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chem Geol 195:159–179

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    Article  Google Scholar 

  • Wronkiewicz DZ, Condie KC (1989) Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga old continental craton. Geochim. Cosmochim. Acta 53:1537–1549

    Google Scholar 

  • Wu FY, Sun DY, Ge WC, Zhang YB, Matthew L, Grant SA, Wilde B-MJ (2011) Geochronology of the Phanerozoic granintoids in northeastern China. Journal of Asian Earth Science 41:1–30

    Article  Google Scholar 

  • Xu WL, Wang F, Pei FP, Meng E, Tang J, Xu MJ, Wang W (2013) Mesozoic tectonic regimes and regional ore–forming background in NE China: constraints from spatial and variations of Mesozoic volcanic rock associations. Acta Petrol Sin 29(2):339–353

    Google Scholar 

  • You JC, Bi XM, Hou CM (2008) Calibration of illite crystallinity measurements by using international standards and its significance. Geoscience 22(1):53–59

    Google Scholar 

  • Zhang YB, Wu FY, Li HM, Lu XP, Sun DY, Zhou HY (2002) Single grain zircon U-Pb ages of the Huangniling granite in Jilin province. Acta Petrol Sin 18(4):475–481

    Google Scholar 

  • Zhang J H (2009) Geochronology and geochemistry of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China, China University of Geosciences (Wuhan)

  • Zhang XZ, Zhou JB, Chi XG, Wang CW, Hu DQ (2008) Late Paleozoic tectonic-sedimentation and petroleum resources in northeastern China. Journal of Jilin University(Earth Science Edition) 38(5):719–725

    Google Scholar 

Download references

Acknowledgements

We thank the Petroleum Geology Research and Central Laboratory (RIPED), PetroChina, for the assistance with the clay mineral and vitrinite reflectance analyses. We thank the Test Center of Jilin University for determining the geochemical compositions of the pelitic rocks. This study was funded by the Natural Science Foundation of China (Grants 41172039 and 41372042).

Availability of data and material

All data generated or analysed during this study are included in this article.

Code availability

All software application or custom code during this study are included in this article.

Funding

This study was funded by the Natural Science Foundation of China. Professor Daqian Hu was supported. Grants 41172039 and 41372042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Naichen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naichen, Z., Daqian, H., Guosheng, S. et al. Clay mineralogy and geochemistry of pelitic rocks in the middle Permian Fanjiatun formation, East Changchun, China: implications for metamorphism and provenance. Arab J Geosci 14, 860 (2021). https://doi.org/10.1007/s12517-021-07259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07259-0

Keywords

Navigation