Skip to main content
Log in

Bioturbation by crab populations vis-à-vis sediment dispersal in Sagar Island, Hugli Estuary, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Crab populations play a major role in net bioturbation of the coastal tracts of the Sagar Island, Hugli Estuary, India. The activities attest to scraping, churning, ingesting, burrowing substrate sediment for feeding, dwelling etc. Non-random distribution of bioturbated patches zone averaged for ten spatial zones indicates percent area bioturbation varying between 0.08% and 29.92%. No significant correlation exists between biological vis-a-vis geomorphological or sedimentological parameters as recorded under 12 chosen parameters varying in zones (Z1–Z10) and zone clusters (A, B and C). Bioturbated sediments, however, possess coarser mean size and better sorting than non-bioturbated sediments. We predict genetic link between biogenic coarsening of sediments and selective substrate aggradation as recorded in the zones (Z5 and Z6) of higher bioturbation (by percent area) over a decade (between 2008 and 2018). Onshore sediment transport in the study area appears to be influenced by the biogenic reworking and subsequent textural modifications of the substrate sediment. Fining landward trend is perceptible in the post-monsoon, non-bioturbated sediments that escaped seasonal storm reworking and biogenic reworking. Gradual inundation of the substrate is interpreted from the fining up sediment succession and the plant/animal traces preserved in them. This assay at Sagar Island predicts a constructive role of biogenic reworking by crab populations on sediment transport and substrate aggradation. Outcome of the present study may be applied to reconstruct sedimentation milieu in similar bioturbated and tidally influenced, retreating delta margin settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aller RC, Cochran JK (2019) The Critical Role of Bioturbation for Particle Dynamics, Priming Potential, and Organic C Remineralization in Marine Sediments: Local and Basin Scales. Front Earth Sci 7:1–14. https://doi.org/10.3389/feart.2019.00157

    Article  Google Scholar 

  • Aller RC, Dodge RE (1974) Animal sediment relations in a tropical lagoon Discovery Bay, Jamaica. J Mar Res 32:209–232

    Google Scholar 

  • Anithamary I, Ramkumar T, Senapathi V (2011) Grain Size Characteristics of the Coleroon Estuary Sediments, Tamilnadu, East Coast of India. Carpathian Journal of Earth and Environmental Sciences 6:151–157

    Google Scholar 

  • Bandyopadhyay S (1997) Coastal Erosion and its Management in Sagar Island, South 24 Parganas, West Bengal. Indian Journal of Earth sciences 24:51–69

    Google Scholar 

  • Bandyopadhyay S, Paul AK, Bandyopadhyay MK (1993) Seasonal Changes in Beach Configuration of Sagar Island, West Bengal. Indian Journal of Landscape Systems and Ecological Studies 16:89–99

    Google Scholar 

  • Baumfalk YA (1979) Heterogeneous Grain Size Distribution in Tidal Flat Sediment Caused by Bioturbation Activity of Arenicola Marina (Polychaeta). Neth J Sea Res 13:428–440

    Article  Google Scholar 

  • Bigham JM, Golden DC, Buol SW, Weed SB, Bowen LH (1978) Iron oxide mineralogy of well–drained ultisols and oxisols: II. Influence on color, surface area and phosphate retention. Soil Sci Soc Am J 42:825–830

    Article  Google Scholar 

  • Blott SJ, Pye K (2001) GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248

    Article  Google Scholar 

  • Bottjer D, Hagadorn JW (2007) Mat Growth Features. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record, 1st edn. Elsevier, Amsterdam, pp 53–71

    Google Scholar 

  • Botto F, Iribarne O (1999) Effect of the burrowing crab Chasmagnathus granulate (Dana) on the benthic community of a SW Atlantic coastal lagoon. J Exp Mar Biol Ecol 241:263–284

    Article  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron J 54:464–465

    Article  Google Scholar 

  • Bradley GM, Redfern J, Hodgetts D, George AD, Wach GD (2018) The applicability of modern tidal analogues to pre-vegetation paralic depositional models. Sedimentology 65:2171–2201

    Article  Google Scholar 

  • Bromley RG (1996) Trace fossils:Biology Taphonomy and Application. Chapman and Hall, London

    Book  Google Scholar 

  • Chakraborty A, Chaudhuri S, Bandyopadhyay S (2011) Ecological and Sedimentological Controls on Spatial Differentiation of Crab Burrows: A Case Study in Gangasagar Beach Area, West Bengal. In: Bandyopadhyay S, Bhattacharji M, Chaudhuri S, Goswami DC, Jog SR, Kar AK (eds) Landforms Processes & Environment Management. ACB Publication, Kolkata, pp 338–355

    Google Scholar 

  • Chakraborty A, Hasiotis ST, Ghosh B, Bhattacharya HN (2013) Fluvial trace fossils in the Middle Siwalik (Sarmatian-Pontian) of Darjeeling Himalayas. Ind J Earth Syst Sci 122:1023–1033

    Article  Google Scholar 

  • Colombini I, Aloia A, Bouslama MF, ElGtari M, Fallaci M, Ronconi L, Scapini F, Chelazzi L (2002) Small-scale spatial and seasonal differences in the distribution of beach arthropods on the northwestern Tunisian coast. Are species evenly distributed along the shore? Mar Biol 140:1001–1012. https://doi.org/10.1007/s00227-001-0771-8

    Article  Google Scholar 

  • Cowell PJ, Hanslow DJ, Meleo JF (2000) The shoreface. In: Short AD (ed) Handbook of Beach and Shoreface Morphodynamics. Wiley, Chichester, pp 39–71

    Google Scholar 

  • Crane J (1975) Fiddler Crabs of the World– Ocypodidae: Genus Uca. Princeton University Press, Princeton

    Google Scholar 

  • Daborn GR, Amos CL, Brylinsky M, Christian H, Drapeau G, Faas RW, Grant J, Long B, Paterson DM, Perillo GME, Piccolo MC (1993) An ecological cascade effect: migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38:225–231

    Article  Google Scholar 

  • Das GK (2016) Occurrence of Bioturbation Structures at Estuarine Environment of the Sunderbans, Eastern India. Earth Science India 9:1–20

    Article  Google Scholar 

  • Dashtgard SE, Gingras MK, Pemberton SG (2008) Grain-size controls on the occurrence of bioturbation. Palaeo 257:224–243. https://doi.org/10.1016/j.palaeo.2007.10.024

    Article  Google Scholar 

  • Davidson-Arnott R (2010) An Introduction to Coastal Processes and Geomorphology. Cambridge University Press

  • De C (1998) Biological reworkings of sediments by crabs: A cause for erosion of the Digha beach, West Bengal. Curr Sci 75:617–620

    Google Scholar 

  • De C (2000) Neoichnological Activities of Endobenthic Invertebrates in Downdrift Coastal Ganges Delta Complex, India: Their Significance in Trace Fossil Interpretations and Paleoshoreline Reconstructions. Ichnos 7:89–113

    Article  Google Scholar 

  • De C (2002) Application of a Biological Tool for Estimating Current Annual Rates of Erosion and Deposition in Modern Coastal Environments: A Case Study in the Bay of Bengal Coast. Mar Georesour Geotechnol 20:209–220

    Article  Google Scholar 

  • Duport E, Gilbert F, Poggiale JC, Dedieu K, Rabouille C, Stora G (2007) Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon. Estuar Coast Shelf Sci 72:522–533

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Knaust D (2012) The ichnofabric concept. In: Knaust D, Bromley RG (eds) Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, Elsevier, Amsterdam 64:139–155

    Article  Google Scholar 

  • Eriksson PG, Porada H, Banerjee S, Bouougri E, Sarkar S, Bumby AJ (2007) Mat-Destruction Features In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record, 1st edn. Elsevier, Amsterdam, pp76–105

  • Folk RL, Robles R (1964) Carbonate Sands of Isla Perez, Alacran Reef Complex, Yucatán. The Journal of Geology 72:255–292

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • Foyle AM, Oertel GF (1997) Transgressive systems tract development and incised-valley fills within a Quaternary estuary-shelf system: Virginia inner shelf, USA. Mar Geol 137:227–249

    Article  Google Scholar 

  • Gibbs RJ, Jha PK, Chakrapani GJ (1994) Sediment particle size in the Hudson River Estuary. Sedimentology 41:1063–1068

    Article  Google Scholar 

  • Grant J (1983) The relative magnitude of biological and physical sediment reworking in an intertidal community. J Mar Res 41:673–689

    Article  Google Scholar 

  • Grant J, Graham D (1994) The Effects of Bioturbation on Sediment Transport on an Intertidal Mudflat. Neth J Sea Res 32:63–72

    Article  Google Scholar 

  • Hagadron JW (2008) Influence of Horizontally–Oriented Bioturbation and Microbial Communities on Marginal Marine Sandstones. 53rd Annual Report, ACS– 43720-GB8. https://acswebcontent.acs.org/prfar/2008/REPORTS/P9637.HTM. Accessed on 21 Dec 2020

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hartnoll RG (1973) Factors affecting the distribution and behavior of the crab, Dotilla fenestrata on East African shores. Estuar cstl mar Sci 1:137–143. https://doi.org/10.1016/0302-3524(73)90066-2

    Article  Google Scholar 

  • Héquette AE (2007) The grain-size characterisation of coastal sand from the Somme estuary to Belgium: Sediment sorting processes and mixing in a tide- and storm-dominated setting. Sediment Geol 202:369–382

    Article  Google Scholar 

  • Icely JD, Jones DA (1978) Factors Affecting the Distribution of the Genus UCA (Crustacea: Ocypodidae) on an East African Shore. Estuar Coast Mar Sci 6:315–325

    Article  Google Scholar 

  • Inman DL (1953) Areal and seasonal variations in beach and nearshore sediments at La Jolla, California. BEB Mem.39, California

  • Joel BA, Eswaran P (2015) Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta, offshore Sarawak, Malaysia. Pet Explor Dev 42:223–231

    Article  Google Scholar 

  • Jumars PA, Nowell ARM (1984) Effects of benthos on sediment transport: difficulties with functional grouping. Cont Shelf Res 3:115–130

    Article  Google Scholar 

  • Kristensen E, Lopes GP, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302

    Article  Google Scholar 

  • Lambiase JJ (1980) Hydraulic control of grain-size distributions in a macrotidal estuary. Sedimentology 27:433–446

    Article  Google Scholar 

  • Levinton JS (1989) Deposit feeding and coastal oceanography. In: Lopez G, Taghon G, Levinton J (eds) Ecology of Marine Deposit Feeders Lecture. Notes on Coastal and Estuarine Studies, Springer, New York, pp 1–23

    Google Scholar 

  • Longbottom MR (1970) The distribution of Arenicola marina (L) with particular reference to the effects of particle size and organic matter of the sediments. J Exp Mar Biol Ecol 5:138–157

    Article  Google Scholar 

  • Luckenbach MW, Huggett DV, Zobrist EC (1988) Sediment transport, biotic modifications and selection of grain size in a surface deposit-feeder. Estuaries 11:134–139

    Article  Google Scholar 

  • Masselink G, Hughes MG (2003) Introduction to Coastal Processes and Geomorphology. Edward Arnold, London

    Google Scholar 

  • Meadows PS, Tait J (1989) Modification of sediment permeability and shear strength by two burrowing invertebrates. Mar Biol 101:75–82

    Article  Google Scholar 

  • Medina R, Losada MA, Losada IJ, Vidal C (1994) Temporal and spatial relationship between sediment grain size and beach profile. Mar Geol 118:195–206

    Article  Google Scholar 

  • Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695

    Article  Google Scholar 

  • Migniot C (1968) A study of the physical properties of different very fine sediments and their behaviour under hydrodynamic action. La Houille Blanche 7:591–620

    Article  Google Scholar 

  • Montserrat F, Suykerbuyk W, Al-Busaidi R, Bouma TJ, Vander WD, Herman PMJ (2011) Effects of mud sedimentation on lugworm ecosystem engineering. J Sea Res 65:170–181

    Article  Google Scholar 

  • Montserrat F, Van Colen C, Provoost P, Milla M, Ponti M, den Meersche V, Ysebaert T, Herman PMJ (2009) Sediment segregation by biodiffusing bivalves. Estuar Coast Shelf Sci 83:379–391

    Article  Google Scholar 

  • Nowell ARM, Jumars PA, Eckman JE (1981) Effects of biological activity on the entrainment of marine sediments. Mar Geol 42:133–153

    Article  Google Scholar 

  • Passalacqua P, Lanzoni S, Paola C, Rinaldo A (2013) Geomorphic signatures of deltaic processes and vegetation: The Ganges-Brahmaputra-Jamuna case study. JGR Earth Surface 118:1838–1849. https://doi.org/10.1002/jgrf.20128

    Article  Google Scholar 

  • Passega R (1957) Texture as characteristic of clastic deposition. AAPG Bull 41:1952–1984

    Google Scholar 

  • Passega R (1964) Grain size representation by CM patterns as a geological tool. J Sediment Petrol 34:830–847

    Article  Google Scholar 

  • Passega R (1977) Significance of CM diagrams of sediments deposited by suspensions. Sedimentology 24:723–733

    Article  Google Scholar 

  • Posey MH (1986) Changes in a benthic community associated with dense beds of a burrowing deposit-feeder, Callianassa californiensis. Mar Ecol Prog Ser 31:15–22

    Article  Google Scholar 

  • Postma H (1967) Sediment transport and sedimentation in the estuarine environment. In: Lauff GH (ed) Estuaries. American Association for the Advancement of Science, Washington DC, pp 158–180

    Google Scholar 

  • Qureshi NA, Saher NU (2012) Burrow morphology of three species of fiddler crab (Uca) along the coast of Pakistan. Belgian Journal of Zoology 142:114–126

    Google Scholar 

  • Richter R (1952) Fluidal-Texture in Sediment-Gesteinen und fiber Sedifluktion fiberaupt. Notizblatt des Hessischen Landesamtes far Bodenforschung zu Wiesbaden 3:67–81

    Google Scholar 

  • Robertson JR, Bancroft K, Vermeer G, Plaisier K (1980) Experimental Studies on the Foraging Behavior of the Sand Fiddler Crab UCA PUGILATOR (Bosc, 1802). J Exp Mar Biol Ecol 44:67–83

    Article  Google Scholar 

  • Robertson JR, Newell SY (1982) Experimental studies of particle ingestion by the Sand Fiddler Crab UCA PUGILATOR (Bose). J Exp Mar Biol Ecol 59:1–21

    Article  Google Scholar 

  • Robertson JR, Pfeiffer WJ (1982) Deposit-feeding by the ghost crab OCYPODE QUADRATA (Fabricius). J Exp Mar Biol Ecol 56:165–177

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Seike K, Curran HA (2014) Characteristics, Distribution Patterns, and Implications for Ichnology of Modern Burrows of Uca (Leptuca) Speciosa, San Salvador Island, Bahamas. J Crustac Biol 34:565–572

    Article  Google Scholar 

  • Sau S, Nagesh TS, Trivedi RK, Dubey SK, Rout SK, Biswas I, Bhakta D (2017) Species composition and habitats of macro-benthic Crustaceans in the intertidal zones of Sundarban, West Bengal, India. J Exp Zool India 20:1103–1107

    Google Scholar 

  • Sayão-Aguiar B, Pinheiro MAA, Colpo KD (2012) Sediment Bioturbation Potential of UCA RAPAX and UCA URUGUAYENSIS as a Result of Their Feeding Activity. J Crustac Biol 32:223–229

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Seilacher A (1964) Biogenic sedimentary structures. In: Imbrie J, Newell N (eds) Approaches to Paleoecology. Wiley, New York, pp 296–316

    Google Scholar 

  • Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428

    Article  Google Scholar 

  • Shull DH (2019) Bioturbation. In: Cochran JK, Bokuniewicz HJ, Yager PL (eds) Encyclopedia of Ocean Sciences, 3rd edn. Elsevier, pp 671–676. https://doi.org/10.1016/B978-0-12-409548-9.11493-9

  • Shull DH, Yasuda M (2001) Size-selective downward particle transport by Cirratulid polychaetes. J Mar Res 59:453–473

    Article  Google Scholar 

  • Soares C, Sobral P (2009) Bioturbation and erodibility of sediments from the Tagus Estuary. Journal of Coastal Research SI 56:1429–1433

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38:1409–1438

    Google Scholar 

  • Sturdivant SK, Shimizu MS (2017) In situ organism-sediment interactions: Bioturbation and biogeochemistry in a highly depositional estuary. PLoS One 12:1–22

    Article  Google Scholar 

  • Swift DJP, Phillips S, Thorne JA (1991) Sedimentation on continental margins, IV: lithofacies and depositional systems. In: Swift DJP, Oertel GF, Tillman RW, Thorne JA (ed) Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy, Spec Publs Int Ass Sediment 14. Wiley, pp 89–152 10.1002/9781444303933.ch4

  • Tanaka Y, Aoki S, Okamoto K (2017) Effects of the bioturbating crab Macrophthalmus japonicas on abiotic and biotic tidal mudflat characteristics in the Tama River, Tokyo Bay, Japan. Plankon Benthos Res 12:34–43

    Article  Google Scholar 

  • Taylor A, Goldring R, Gowland S (2003) Analysis and application of ichnofabrics. Earth Sci Rev 60:227–259

    Article  Google Scholar 

  • Tonkin NS, McIlroy D, Meyer R, Moore-Turpin A et al (2010) Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation, Jeanne d’Arc Basin, offshore Newfoundland, Canada. AAPG Bull 94(7):1059–1078

    Article  Google Scholar 

  • Vernberg FJ, Vernberg WB (1981) Functional adaptations of marine organisms. Academic Press, London

    Google Scholar 

  • Wang JQ, Zhang XD, Jiang LF, Bertness MD, Fang CM, Chen JK, Hara T, Li B (2010) Bioturbation of Burrowing Crabs Promotes Sediment Turnover and Carbon and Nitrogen Movements in an Estuarine Salt Marsh. Ecosystems 13:586–599

    Article  Google Scholar 

  • Wang P (2012) Principles of Sediment Transport Applicable in Tidal Environments. In: Davis R Jr, Dalrymple R (eds) Principles of Tidal Sedimentology. Springer, Dordrecht, pp 19–34

    Chapter  Google Scholar 

  • Wetzel A (1984) Bioturbation in deep-sea fine-grained sediments: influence of sediment texture, turbidite frequency and rates of environmental change. In: Stow DAV, Piper DJW (eds) Fine-Grained Sediments: Deep Water Processes and Facies. Geological Society, London, pp 595–608

    Google Scholar 

  • Xie T, Dou P, Li S, Cui B, Bai J, Wang Q, Ning Z (2020) Potential Effect of Bioturbation by Burrowing Crabs on Sediment Parameters in Coastal Salt Marshes. Wetlands 40:2775–2784

    Article  Google Scholar 

  • Yang B, Dalrymple RW, Gingras MK, Chun S, Lee H (2007) Up-Estuary Variation of Sedimentary Facies and Ichnocoenoses in an Open-Mouthed, Macrotidal, Mixed-Energy Estuary, Gomso Bay, Korea. J Sediment Res 77:757–771

    Article  Google Scholar 

  • Zhang XD, Jia X, Chen YY, Shao JJ, Wu XR, Shang L, Li B (2013) Crabs mediate interactions between native and invasive salt marsh plants: a Mesocosm study. PLoS One 8(9):e74095

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the logistic help provided by the Department of Geography, University of Calcutta, and Department of Geology, Jogamaya Devi College, Kolkata. University Grants Commission, Government of India, is acknowledged for part financing through a fellowship grant assigned to one of the authors (PKS). Satyabrata Mandal and Biyas Roy are thanked for their help in the preparation of manuscript. Thanks are also due to the reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chakraborty.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Responsible editor: Attila Ciner

Supplementary Information

Table S1

(DOCX 15 kb)

Table S2

(DOCX 25 kb)

Table S3

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, P.K., Chakraborty, A., Mukhopadhyay, J. et al. Bioturbation by crab populations vis-à-vis sediment dispersal in Sagar Island, Hugli Estuary, India. Arab J Geosci 14, 877 (2021). https://doi.org/10.1007/s12517-021-07237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07237-6

Keywords

Navigation