Skip to main content

Advertisement

Log in

Soil total carbon mapping, in Djerid Arid area, using ASTER multispectral remote sensing data combined with laboratory spectral proximal sensing data

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Spatial quantification of soil attributes is needed to assess and monitor soil resources. Our objective was to map soil total carbon (TC) over 580 ha bare soils, in Djerid arid area (SW Tunisia). One hundred and forty-four soil samples were collected in nodes of 200 m square grid and their spectra acquired in the laboratory at 400–2500 nm have served to radiometrically correct ASTER image using the empirical line method. TC was predicted using partial least squares regression-kriging model, based on the 144 spectra extracted from the nine visible-near infrared ASTER bands. Residual interpolation has improved prediction efficiency. Indeed, PLSR-kriging achieved higher R2 and lower RMSE than PLSR, respectively: 0.78 against 0.53 and 0.52% against 0.16%. Furthermore, spatial distribution of these quantifications has a physical significance. Our results offer relevant method for soil attribute mapping on large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aichi H, Fouad Y, Chabaane ZL, Sanaa M, Walter C (2018) Prediction accuracy of local and regional soil total carbon models, calibrated based on visible-near infrared spectra, in the Djerid arid region. J Near Infrared Spec 26:322–334. https://doi.org/10.1177/0967033518799518

    Article  Google Scholar 

  • Anderson MC (2008) A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens Environ 112(12):4227–4241. https://doi.org/10.1016/j.rse.2008.07.009

    Article  Google Scholar 

  • Atlas du gouvernorat de Tozeur (1996) Direction générale de l’aménagement de territoires, Ministère de l’environnement et d’aménagement du territoire, Tunisie 57 pp

  • Ben-Dor E, Patkin K, Banin A, Karnieli A (2004) Mapping of several soil properties using DAIS 7915 hyperspectral scanner data. A case study over clayey soils in Israel. Int J Remote Sens 23:1043–1062. https://doi.org/10.1080/01431160010006962

    Article  Google Scholar 

  • Ben-Dor E, Kindel B, Goetz AFH (2004) Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data. Remote Sens Environ 90:389–404. https://doi.org/10.1016/j.rse.2004.01.014

    Article  Google Scholar 

  • Bryant RG (1999) Application of AVHRR to monitoring a climatically sensitive playa. Case study: Chott el Djerid, southern Tunisia. Earth Surf Proc Land 24(4):283–302

    Article  Google Scholar 

  • Chabrillat S, Goetz AFH, Krosley L, Olsen HW (2002) Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens Environ 82:431–445. https://doi.org/10.1016/S0034-4257(02)00060-3

  • Chen L, Ren C, Li L, Wang Y, Zhang B, Wang Z, Li L (2019) A comparative assessment of geostatistical, machine learning, and hybrid approaches for mapping topsoil organic carbon content. ISPRS Int J Geo-Inf 8:174–192. https://doi.org/10.3390/ijgi8040174

    Article  Google Scholar 

  • Chikhaoui M, Bonn F, Bokoye AI, Merzouk A (2006) Comparaison des capteurs ASTER et ETM+ pour la cartographie de la dégradation des sols à l’aide de l’indice LDI. Can J Remote Sens 32:74–83

    Article  Google Scholar 

  • Coudé-Gaussen G (1990) Les régions sources de poussières au Sahara. Sécheresse 1(2):134–141

    Google Scholar 

  • Datt B, McVicar TR, Van Niel TG, Jupp DLB, Pearlman JS (2003) Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE T Geosci Remote 41(6):1246–1259. https://doi.org/10.1109/TGRS.2003.813206

    Article  Google Scholar 

  • Demattê JAM, Gama MAP, Cooper M, Araujo JC, Nanni MR, Fiorio PR (2004) Effect of fermentation residue on the spectral reflectance properties of soils. Geoderma 120(3-4):187–200. https://doi.org/10.1016/j.geoderma.2003.08.016

    Article  Google Scholar 

  • Demattê JAM, Terra FS, Quartaroli CF (2012) Spectral behavior of some modal soil profiles from São Paulo state, Brazil. Bragantia Campinas 71(3):413–423. https://doi.org/10.1590/S0006-87052012005000038

    Article  Google Scholar 

  • Dewitte O, Jones A, Elbelrhiti H, Horion S, Montanarella L (2012) Satellite remote sensing for soil mapping in Africa: an overview. Prog Phys Geogr 36:514–538. https://doi.org/10.1177/0309133312446981

    Article  Google Scholar 

  • Di L, Rundquist DC (1994) A one step algorithm for correction and calibration of AVHRR level 1b data. Photogramm Eng Rem S 60(2):165–171

    Google Scholar 

  • El Fekih M (1965) Etude pédologique des oasis continentale du Djerid (Sedada, Degache, Tozeur). Direction des Sols. publ. N°ES 289. Tunis,138 pp

  • Farifteh J, Van der Meer F, Atzberger C, Carranza EJM (2007) Quantitative analysis of salt affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Environ 110:59–78. https://doi.org/10.1016/j.rse.2007.02.005

    Article  Google Scholar 

  • Gaffey SJ (1986) Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): calcite, aragonite, and dolomite. Am Mineral 71:151–116. https://doi.org/10.1029/JB092iB02p01429

    Article  Google Scholar 

  • Ge W, Cheng Q, Tang Y, Jing L, Gao C (2018) Lithological classification using sentinel-2A data in the Shibanjing ophiolite complex in Inner Mongolia, China. Remote Sens 10(4):638–660. https://doi.org/10.3390/rs10040638

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford Univ. Press, New York

  • Gomez C, Delacourt C, Allemand P, Ledru P, Wackerle R (2005) Using ASTER remote sensing data set for geological mapping, in Namibia. Phys Chem Earth 30:97–108. https://doi.org/10.1016/j.pce.2004.08.042

    Article  Google Scholar 

  • Grunwald S (2010) The current state of digital soil mapping and what is next, in digital soil mapping: bridging research, production and environmental applications. Edited by Boetinger J, Howell DW, Moore AC, Hartemink A E and Kienst-Brown S. Edit. Springer Heidelberg, pp. 3-12

  • Hengl T, Heuvelink GBM, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1–2):75–93. https://doi.org/10.1016/j.geoderma.2003.08.018

  • Hengl T (2007) A practical guide to geospatial mapping of environmental variables. JRC, Scientific and Technical Research series, Office for official Publications of the European Communities, Luxembourg:143 pp

  • Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33(10):1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001

    Article  Google Scholar 

  • Heuvelink GBM, Webster R (2001) Modeling soil variation: past, present, and future. Geoderma 100(3-4):269–301. https://doi.org/10.1016/S0016-7061(01)00025-8

    Article  Google Scholar 

  • Honarmand M, Ranjbar H, Shahabpour J (2012) Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal–Barez area, Southeastern Iran. Resour Geol 62(2):119–139. https://doi.org/10.1111/j.1751-3928.2012.00184.x

    Article  Google Scholar 

  • Hunt G, Salisbury JW (1976) Visible and near infrared spectra of minerals and rocks: XII. Metamorphic rocks. Mod Geol 5:219–228

    Google Scholar 

  • Hunt GR, Salisbury JW, Lenhoff CJ (1971) Visible and near-infrared spectra of minerals and rocks: VI. Sulfides and sulfates. Mod Geol 3:1–14

    Google Scholar 

  • IUSS Working Group (2015) World reference base for soil resources 2014, update 2015 international soil classificationsystem for naming soils and creating legends for soil maps. World Soil Resources. Reports no. 106, 2015. Rome: FAO

  • Lagacherie P, Baret F, Feret JB, Madeira NJ, Robbez-Masson JM (2008) Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens Environ 112(3):825–835. https://doi.org/10.1016/j.rse.2007.06.014

    Article  Google Scholar 

  • McBratney AB, Mendonca Santos ML, Minasny B (2003) On dgital soil mapping. Geoderma 117(1-2):3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  • Mulder VL, de Bruin S, Schaepman ME, Mayr TR (2011) The use of remote sensing in soil and terrain mapping - a review. Geoderma 162(1-2):1–19. https://doi.org/10.1016/j.geoderma.2010.12.018

    Article  Google Scholar 

  • Mulder VL, de Bruin S, Weyermann J, Kokaly RF, Schaepman ME (2013) Characterizing regional soil mineral composition using spectroscopy and geostatistics. Remote Sens Environ 139:415–429. https://doi.org/10.1016/j.rse.2013.08.018

    Article  Google Scholar 

  • Odeh IOA, Gessler PE, McKenzie NJ, McBrateney AB (1994) Using attributes derived from digital elevation models for spatial prediction of soil properties. Resource Technology, Melbourne, Australia, pp 451–463

    Google Scholar 

  • Richter N, Jarmer T, Chabrillat S, Oyonarte C, Hostert P, Kaufmann H (2009) Free iron oxide determination in Mediterranean soils using diffuse reflectance spectroscopy. Soil Sci Soc Am J 73:72–81. https://doi.org/10.2136/sssaj2008.0025

    Article  Google Scholar 

  • Tuominen J, Lipping T (2011) Detection of environmental change using hyperspectral remote sensing at Olkiluoto repository site. Working Report 2011-26, Posiva Oy, Finland

  • Vaudour E, Gomez C, Fouad Y, Lagacherie P (2019) Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens Environ 223:21–33. https://doi.org/10.1016/j.rse.2019.01.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamouda Aichi.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aichi, H., Fouad, Y., Lili Chabaane, Z. et al. Soil total carbon mapping, in Djerid Arid area, using ASTER multispectral remote sensing data combined with laboratory spectral proximal sensing data. Arab J Geosci 14, 405 (2021). https://doi.org/10.1007/s12517-021-06698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06698-z

Keywords

Navigation