Comprehensive analysis of cloudiness over Iran with CloudSat data

Abstract

The spatial distribution of different clouds has a significant effect on the supply of water resources, especially in countries with water shortages. Eight-years CloudSat 2B-CLDCLASS data for extended winters (October to March) from 2010 to 2017 has been used here to analyze the characteristics of the cloud cover over Iran. The results show that cirrus-type clouds are the most abundant, with a presence of 28%, followed by altostratus, with a presence of 22.5%. High variability in spatial distribution has also been observed. The most frequent type of cloudiness associated with each region of the country is detailed in this article. The average height of each type of cloudiness observed is also analyzed, being, in the case of the two most frequent types, 10.47 km for cirrus and 7.36 for altostratus. The greatest contribution to rainfall was, however, made by the nimbostratus, with a rate close to 45%. Behind them, stratocumulus, altocumulus, and clouds associated with deep convection show rates of 23.8%, 9.8%, and 8.33%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ackerman SA, Strabala KI, Menzel WP, Frey RA, Moeller CC, Gumley LE (1998) Discriminating clear sky from clouds with MODIS. J Geophys Res Atmos 103(D24):32141–32157

    Article  Google Scholar 

  2. Alijani B,  O’Brien J,  Yarnal B (2008) Spatial analysis of precipitation intensity and concentration in Iran. Theor Appl Climatol 94:107–124

    Article  Google Scholar 

  3. Alijani B, Harman JR (1985) Synoptic climatology of precipitation in Iran. Ann Am Assoc Geogr 75(3):404–416

    Article  Google Scholar 

  4. Behrangi A, Kubar T, Lambrigtsen B (2012) Phenomenological description of tropical clouds using CloudSat cloud classification. Mon Weather Rev 140:3235–3249

    Article  Google Scholar 

  5. Benas N,  Meirink JF, Karlsson KG, Stengel M, Stammes P (2020) Satellite observations of aerosols and clouds over southern China from 2006 to 2015: analysis of changes and possible interaction mechanisms. Atmos Chem Phys 20:457–474

    Article  Google Scholar 

  6. Collow ABM, Miller MA (2016) The seasonal cycle of the radiation budget and cloud radiative effect in the Amazon Rain Forest of Brazil. J Clim 29:7703–7722. https://doi.org/10.1175/JCLI-D-16-0089.1

    Article  Google Scholar 

  7. Darand M, Mansouri Daneshvar MR (2014) Regionalization of precipitation regimes in Iran using principal component analysis and hierarchical clustering analysis. Environ Process 1:517–532. https://doi.org/10.1007/s40710-014-0039-1

    Article  Google Scholar 

  8. Delgado-Bonal A, Marshak A, Yang Y, Holdaway D (2020) Analyzing changes in the complexity of climate in the last four decades using MERRA-2 radiation data. Sci Rep 10:922

  9. Eastman R, Warren SG, Hahn CJ (2011) Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J Clim 24:5914–5934

    Article  Google Scholar 

  10. Gao C, Li Y, Chen H (2019) Diurnal variations of different cloud types and the relationship between the diurnal variations of clouds and precipitation in Central and East China. Atmosphere 2019(10):304. https://doi.org/10.3390/atmos10060304

    Article  Google Scholar 

  11. Ghasemifar E, Farajzadeh M, Perry MC, Rahimi YG, Bidokhti AA (2018a) Analysis of spatiotemporal variations of cloud fraction based on geographic characteristics over Iran. Theor Appl Climatol 134:1429–1445. https://doi.org/10.1007/s00704-017-2308-1

    Article  Google Scholar 

  12. Ghasemifar E, Farajzadeh M, Ghavidel Rahimi Y, Bidokhti AA (2018b) Precipitation rate climatology related to different cloud types using satellite imagery over Iran. Arab J Geosci 11:78 (2018). https://doi.org/10.1007/s12517-018-3419-4

    Article  Google Scholar 

  13. Ghasemifar E, Farajzadeh M, Mohammadi C, Alipoor E (2019): Long-term change of surface temperature in water bodies around Iran – Caspian Sea, Gulf of Oman, and Persian Gulf – using 2001 2015 MODIS data. Phys Geogr. https://doi.org/10.1080/02723646.2019.1618231

  14. Guillaume A, Kahn BH, Yue Q, Fetzer EJ, Wong S, Manipon GJ, Hua H, Wilson BD (2018) Horizontal and vertical scaling of cloud geometry inferred from CloudSat Data. J Atmos Sci 75:2187–2197

    Article  Google Scholar 

  15. Guo Z, Zhou T (2015) Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products. Adv Atmos Sci 32(5):659–670. https://doi.org/10.1007/s00376-014-4070-y

    Article  Google Scholar 

  16. Hong Y, Gourley JJ (2015) Radar hydrology principles, models, and applications. CRC Press, Taylor & Francis Group

    Google Scholar 

  17. Jiang JH, Su H, Huang L, Wang Y, Massie S, Zhao B, Omar A, Wang Z (2018) Contrasting effects on deep convective clouds by different types of aerosols. Nature Communications 9:3874. https://doi.org/10.1038/s41467-018-06280-4www.nature.com/naturecommunications

    Article  Google Scholar 

  18. Kahn BH, Chahine MT, Stephens GL, Mace GG, Marchand RT, Wang Z, Barnet CD, Eldering A, Holz RE, Kuehn RE, and Vane DG (2008) Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount. Atmos Chem Phys 8:1231–1248

    Article  Google Scholar 

  19. King MD, Platnick S, Menzel WP, Ackerman SA, Hubanks PA (2013) Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua Satellites. IEEE transactions on geoscience and remote sensing 51(7):3826–3852. https://doi.org/10.1109/TGRS.2012.2227333

    Article  Google Scholar 

  20. Kukulies J, Chen D, Wang M (2019) Temporal and spatial variations of convection and precipitation over the Tibetan Plateau based on recent satellite observations. Part I: Cloud climatology derived from CloudSat and CALIPSO. Int J Climatol 39:5396–5412

    Article  Google Scholar 

  21. L’ecuyer TS, Hang Y, Matus AV, Wang Z (2019) Reassessing the effect of cloud type on earth’s energy balance in the age of active spaceborne observations. Part I: Top of Atmosphere and Surface. J Clim (32):6197–6217

  22. Li Y, Gu H (2006) Relationship between middle stratiform clouds and large scale circulation over eastern China. Geophys Res Lett 33(9):L09706. https://doi.org/10.1029/2005GL025615

    Article  Google Scholar 

  23. Li Y, Liu X, Chen B (2006) Cloud type climatology over the Tibetan Plateau: a comparison of ISCCP and MODIS/TERRA measurements with surface observations. Geophys Res Lett 33(17). https://doi.org/10.1029/2006GL026890

  24. Li J, Huang J, Stamnes K, Wang T, Yi Y, Ding X, Lv Q, Jin H (2014) Distributions and radiative forcings of various cloud types based on active and passive satellite datasets – Part 1: geographical distributions and overlap of cloud types. Atmos Chem Phys Discuss 14:10463–10514 https://www.atmos-chem-phys-discuss.net/14/10463/2014/. https://doi.org/10.5194/acpd-14-10463-2014

    Article  Google Scholar 

  25. Manea A, Birsan MV, Tudorache G, Cărbunaru F (2016) Changes in the type of precipitation and associated cloud types in Eastern Romania (1961–2008). Atmos Res 169(2016):357–365. https://doi.org/10.1016/j.atmosres.2015.10.020

    Article  Google Scholar 

  26. Meerkötter R, König C, Bissolli P, Gesell G, Mannstein H (2004) A 14-year European cloud climatology from NOAA//AVHRR data in comparison to surface observations. Geophys Res Lett 31:L15103. https://doi.org/10.1029/2004GL020098

    Article  Google Scholar 

  27. Naud CM, Posselt DJ, van den Heever SC (2015) A CloudSat–CALIPSO view of cloud and precipitation properties across cold fronts over the global oceans. J Clim 25(17):6743–6762

  28. Peng J, Zhang H, Li ZQ (2014) Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Adv Atmos Sci 31(3):593–603. https://doi.org/10.1007/s00376-013-3055-6

    Article  Google Scholar 

  29. Rossow, W.B. (2017)  Climate Data Record Program (CDRP): Climate Algorithm Theoretical Basis Document (C-ATBD) International Satellite Cloud Climatology Project (ISCCP) H-Series, CDRP-ATBD-0872, Asheville, North Carolina, USA, p 179

  30. Rossow WB, Schiffer RA (1991) ISCCP cloud data product. Bull Am Meteorol Soc 72(1):1–20

    Article  Google Scholar 

  31. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2260–2287

    Article  Google Scholar 

  32. Rossow WB, Gardner LC, Lacis AA (1989) Global, seasonal cloud variations from satellite radiance measurements. Part I: sensitivity of analysis. J Clim 2(5):419–458

    Article  Google Scholar 

  33. Sassen K, Wang Z (2008) Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys Res Lett 35:L04805. https://doi.org/10.1029/2007GL032591

    Article  Google Scholar 

  34. Sassen K, Wang Z, Liu D (2008) Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J Geophys Res 113:D00A12. https://doi.org/10.1029/2008JD009972

    Article  Google Scholar 

  35. Saunders RW, Kriebel KT (1988) An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int J Remote Sens 9(1):123–150

    Article  Google Scholar 

  36. Stephens GL, Vane DG, Tanelli S, Im E, Durden S, Rokey M, Reinke D, Partain P, Mace GG, Austin R, L'Ecuyer T, Haynes J, Lebsock M, Suzuki K, Waliser D, Wu D, Kay J, Gettelman A, Wang Z, Marchand R (2008) CloudSat mission: performance and early science after the first year of operation. J Geophys Res Atmos 113(D8)

  37. Subrahmanyam KV, Kumar KK (2013) CloudSat observations of cloud-type distribution over the Indian summer monsoon region. Ann Geophys 31:1155–1162

    Article  Google Scholar 

  38. Wang Z, Sassen K (2001) Cloud type and macrophysical property retrieval using multiple remote sensors. J Appl Meteorol Climatol 40(10):1665–1682

    Article  Google Scholar 

  39. Wang Z, Sassen K (2007) Level 2 cloud scenario classification product process description and interface control document, CloudSat Project, A NASA Earth System Science Pathfinder Mission, Version: 5.0

  40. Wood R (2012) Stratocumulus clouds. Mon Weather Rev 140(8):2373–2423

    Article  Google Scholar 

  41. Wood R (2015) Stratus and stratocumulus, in Encyclopedia of Atmospheric Sciences, 2nd ed., vol. 2, edited by G. R. North, J. Pyle, and F. Zhang. Elsevier, pp 196– 200

  42. Xu J, Liu D, Wang Z, Wu D, Yu S, Wang Y (2019) A study of the characteristics of vertical cloud base height distribution over Eastern China. Atmosphere 10(6):307. https://doi.org/10.3390/atmos10060307

    Article  Google Scholar 

  43. Yu RC, Wang B,  Zhou TJ (2004) Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J Clim 17: 2702–2713. https://doi.org/10.1175/1520-0442(2004)017<2702:CEOTDC>2.0.CO;2

  44. Yue Q, Fetzer EJ, Kahn BH, Wong S, Manipon G, Guillaume A, Wilson B (2013) Cloud-state-dependent sampling in AIRS observations based on CloudSat Cloud Classification. J Clim 26(21):8357–8377

    Article  Google Scholar 

Download references

Acknowledgements

The authors are gratefully thankful to the CloudSat 2B-CLDCLASS team to providing this dataset.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elham Ghasemifar.

Additional information

Responsible editor: Zhihua Zhang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghasemifar, E., Eiras-Barca, J., Rezaei, M. et al. Comprehensive analysis of cloudiness over Iran with CloudSat data. Arab J Geosci 14, 325 (2021). https://doi.org/10.1007/s12517-021-06576-8

Download citation

Keywords

  • Cloud types
  • Precipitation
  • CloudSat
  • Iran