Skip to main content

Advertisement

Log in

Reliability of using ASTER data in lithologic mapping and alteration mineral detection of the basement complex of West Berenice, Southeastern Desert, Egypt

  • S. I. SCJGE-1 2019
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Neoproterozoic basement complex of Egypt outcrops in the Eastern Desert (ED) and southern Sinai, and is regarded to represent the northwestern continuation of the Arabian–Nubian Shield (ANS). The area west of Berenice has been given little attention, although it represents the key to understanding the geologic history of the South Eastern Desert and the entire ED. The present work is an integrated study using remote sensing (Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data imagery) and field-structural data to assess their utility in lithologic mapping and in detecting alteration mineral zones with considerable accuracy. A false-color-composite image, color-ratio composite image, decorrelation stretch, mafic index (MI), and quartz index (QI) were used to discriminate and map the various rock units. Correlation of False-color images of the ASTER band combination (7, 3, 1) with previous lithological mapping studies of the study area allow preliminary discrimination of different lithologies and drawing a base map. Subsequently, ASTER band ratios tested (4/1, 3/1, 12/14) and (4/7, 4/6, 4/10) with the ground truth data were used to refine the base map and construct the digital detailed geologic map. Petrographically, the investigated rock samples show kaolinite, chlorite, and epidote in alteration zones. The spectral angle mapper (SAM)-supervised classification using reference spectra of the USGS spectral library was used for detecting alteration zones. For verification, total accuracy assessment was carried out to evaluate the band combination and band ratios used in the lithologic mapping. That reached to 85.01% for band ratio 4/1, 3/1, 12/14 in RGB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdeen MM, Thurmond AK, Abdelsalam MG, and Stern RJ (2001) Application of ASTER band-ratio images for geological mapping in arid regions: the Neoproterozoic Allaqi Suture, Egypt. In Proceedings of GSA 2001 Annual Meeting. Boston

  • Abdel-Khalek, M. L., Takla, M. A., Sehim, A., Hamimi, Z., and El Manawi, A. W., 1992. Geology and tectonic evolution of Wadi Beitan area, southeastern Desert, Egypt. Geology of the Arab World. Cairo University, 369–394

  • Aboelkhair H, Ninomiya Y, Watanabe Y, Sato I (2010) Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. J Afr Earth Sci 58(1):141–151

    Article  Google Scholar 

  • Abrams M, Hook S, Ramachandran B (2002) ASTER user handbook, version 2. Jet propulsion laboratory 4800:135

    Google Scholar 

  • Akaad , M. K., and El-Ramly , M. F., 1960. Geological history and classification of the basement rocks of the central Eastern Desert of Annals of the Geological Survey of Egypt, Paper. 9, 24pp

  • Akaad MK, Noweir AM (1969) Lithostratigraphy of the Hammamat umm Seleimat district, Eastern Desert, Egypt. Nature 223:284

    Article  Google Scholar 

  • Akaad MK, Noweir AM (1980) Geology and lithostratigraphy of the Arabian desert orogenic belt of Egypt between latitudes 25° 35′ and 26° 30′ N. Precambrian Res 6:A6

    Article  Google Scholar 

  • Alley, R. (1999). Algorithm theoretical basis document for: decorrelation stretch

    Google Scholar 

  • Amer R, Kusky T, El Mezayen A (2012) Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Adv Space Res 49(1):121–134

    Article  Google Scholar 

  • Amer R, Kusky T, Ghulam A (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56(2–3):75–82

    Article  Google Scholar 

  • Askari G, Pour A, Pradhan B, Sarfi M, Nazemnejad F (2018) Band ratios matrix transformation (BRMT): a sedimentary lithology mapping approach using ASTER satellite sensor. Sensors 18(10):3213

    Article  Google Scholar 

  • Asran AM, Emam A, El-Fakharani A (2017) Geology, structure, geochemistry and ASTER-based mapping of Neoproterozoic Gebel El-Delihimmi granites, Central Eastern Desert of Egypt. Lithofacies 282:358–372

    Google Scholar 

  • ASTER Science Project Website, 2007. http://www.gds.aster.ersdac.or.jp/

  • Bedini E (2019) Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain. Adv Space Res 63(10):3346–3357

    Article  Google Scholar 

  • Conoco, C., 1987. Geological map of Egypt, scale 1: 500,000-NF 36 NE-Bernice, Egypt. The Egyptian General Petroleum Corporation, Cairo.

  • Di Tommaso I, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32(1–2):275–290

    Article  Google Scholar 

  • El Ramly MF (1972) A new geological map for the basement rocks in the eastern and southwestern desert of Egypt: scale 1: 1,000,000. Annals of the Geological Survey of Egypt

  • El Gaby S (1988) Geology, evolution and metallogenesis of the Pan-African belt in Egypt. The Pan-African belt of the northeast Africa and adjacent areas, 17–68

  • El Gaby S, List FK, and Tehrani R (1990) The basement complex of the Eastern Desert and Sinai. S. Rushdi (Ed.) The geology of Egypt, Balkema, Rotterdam, pp. 175–184

  • Elsaid M, Aboelkhair H, Dardier A, Hermas E, Minoru U (2014) Processing of multispectral ASTER data for mapping alteration minerals zones: as an aid for uranium exploration in Elmissikat-Eleridiya granites, Central Eastern Desert, Egypt. The Open Geology Journal 8(1)

  • Gabr SS, Hassan SM, Sadek MF (2015) Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol Rev 71:1–13

    Article  Google Scholar 

  • Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38(1–2):59–69

    Article  Google Scholar 

  • Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11(3):326–335

    Article  Google Scholar 

  • Gupta RP (2018) Remote sensing geology. 3rd Edition, Springer-Verlag GmbH Germany, 428

  • Hassan SM, Taha MM, Mohammad AT (2017) Late Neoproterozoic basement rocks of Meatiq area, Central Eastern Desert, Egypt: petrography and remote sensing characterizations. J Afr Earth Sci 131:14–31

    Article  Google Scholar 

  • Horning N (2010) Remote sensing for ecology and conservation: a handbook of techniques. Oxford University Press

  • Hume WF (1934) Geology of Egypt, Vol. 2, part I. The metamorphic rocks. Geol. Surv. Egypt, Cairo

  • Hunt GR (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42(3):501–513

    Article  Google Scholar 

  • Ibrahim WS, Watanabe K, Yonezu K (2016) Structural and litho-tectonic controls on Neoproterozoic base metal sulfide and gold mineralization in North Hamisana shear zone, South Eastern Desert, Egypt: the integrated field, structural, Landsat 7 ETM+ and ASTER data approach. Ore Geol Rev 79:62–77

    Article  Google Scholar 

  • Jakob S, Bühler B, Gloaguen R, Breitkreuz C, Eliwa HA, El Gameel K (2015) Remote sensing based improvement of the geological map of the Neoproterozoic Ras Gharib segment in the Eastern Desert (NE–Egypt) using texture features. J Afr Earth Sci 111:138–147

    Article  Google Scholar 

  • Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Stern RJ (2011) Late Cryogenian–Ediacaran history of the Arabian–Nubian shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61(3):167–232

    Article  Google Scholar 

  • Kalinowski A, Oliver S (2004) ASTER mineral index processing manual. Remote Sensing Applications, Geoscience Australia 37:36

    Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44(2–3):145–163

    Article  Google Scholar 

  • Ninomiya Y, Fu B, Cudahy TJ (2005) Detecting lithology with advanced spaceborne thermal emission and reflection radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99(1–2):127–139

    Article  Google Scholar 

  • Ninomiya Y, Fu B (2018) Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geol Rev

  • Noori L, Pour AB, Askari G, Taghipour N, Pradhan B, Lee CW, Honarmand M (2019) Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for Polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sensing 11(5):495

    Article  Google Scholar 

  • Pour AB, Hashim M, Hong JK, Park Y (2019a) Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-Eastern Graham Land, Antarctic Peninsula. Ore Geol Rev 108:112–133

    Article  Google Scholar 

  • Pour AB, Park Y, Crispini L, Läufer A, Kuk Hong J, Park TYS, Zoheir B, Pradhan B, Muslim AM, Hossain MS, Rahmani O (2019b) Mapping Listvenite occurrences in the damage zones of northern Victoria land, Antarctica using ASTER satellite remote sensing data. Remote Sensing 11(12):1408

    Article  Google Scholar 

  • Pour AB, Park Y, Park TYS, Hong JK, Hashim M, Woo J, Ayoobi I (2019c) Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int 34(7):785–816

    Article  Google Scholar 

  • Pour AB, Park Y, Park TYS, Hong JK, Hashim M, Woo J, Ayoobi I (2018a) Regional geology mapping using satellite-based remote sensing approach in northern Victoria land, Antarctica. Polar Science 16:23–46

    Article  Google Scholar 

  • Pour AB, Hashim M, Park Y, Hong JK (2018b) Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int 33(12):1281–1306

    Article  Google Scholar 

  • Rockwell BW, Hofstra AH (2008) Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1):218–246

    Article  Google Scholar 

  • Salem SM, El Sharkawi M, El-Alfy Z, Soliman NM, Ahmed SE (2016) Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses. J Afr Earth Sci 117:389–400

    Article  Google Scholar 

  • Schurmann HME (1957) The Precambrian of Egypt east of the River Nile. Geol and Minjbeuw, 19th year, No. 5, 165–171

  • Sheikhrahimi A, Pour AB, Pradhan B, Zoheir B (2019) Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: a case study from the Sanandaj-Sirjan zone, Iran. Adv Space Res 63(10):3315–3332

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22(1):319–351

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40(4):3–1

    Article  Google Scholar 

  • Sun T, Chen F, Zhong L, Liu W, Wang Y (2019) GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China. Ore Geol Rev 109:26–49

    Article  Google Scholar 

  • Zoheir B, Emam A (2012) Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the south Eastern Desert, Egypt. J Afr Earth Sci 66:22–34

    Article  Google Scholar 

  • Zoheir B, El-Wahed MA, Pour AB, Abdelnasser A (2019) Orogenic gold in transpression and transtension zones: field and remote sensing studies of the Barramiya–Mueilha sector. Egypt Remote Sens 11:2122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Aboelkhair.

Additional information

This article is part of the Topical Collection on Current Advances in Geological Research of Egypt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboelkhair, H., Abdelhalim, A., Hamimi, Z. et al. Reliability of using ASTER data in lithologic mapping and alteration mineral detection of the basement complex of West Berenice, Southeastern Desert, Egypt. Arab J Geosci 13, 287 (2020). https://doi.org/10.1007/s12517-020-5227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-5227-x

Keywords

Navigation