Skip to main content

Advertisement

Log in

A GIS-based statistical model for assessing groundwater susceptibility index in shallow aquifer in Central Tunisia (Sidi Bouzid basin)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A comprehensive approach for assessing the shallow aquifer Susceptibility Index (SI) to pollution was proposed by combining the Vulnerability Index (VI) and Quality Index (QI) in Sidi Bouzid basin in Central Tunisia. Hydrochemical investigation showed that nitrate concentrations and total dissolved solid (TDS) values of the Mio-Plio-Quaternary (MPQ) aquifer in the study area were ranging from 14.3 to 111 mg/l and 1218 to 6202 mg/l successively. VI was first estimated using either a generic DRASTIC model or DRASTIC-LU model by adding land use (LU) factor, with preset factor weights; these weights were later adjusted using a single parameter sensitivity analysis (SPSA) or two different statistical methods: canonical analysis of principal coordinates (CAP) and partial least squares (PLS). Compared to the generic models, the weight of the factor impact of vadose zone (I) is equal to 5 remained the highest for all the other models, except for DRASTIC one using a CAP weight adjustment technique where the weight of I is equal to 1. DRASTIC-LU and DRASTIC-LU-CAP models predicted the widest (VILU − min=89, VILU − max=206) and narrowest (VILU − CAP − min=59, VILU − CAP − max=125) VI range, respectively. VI obtained by different weight adjustment techniques significantly correlated with nitrate concentrations with a significant correlation coefficient, higher than 0.50. Based on a model selection criterion, correlation between vulnerability indices and nitrate concentration, DRASTIC-LU-CAP may be recommended as the best model. QI was assessed by simply adding the concentration of some major elements (\( {Cl}^{-},{Na}^{+},{NO}_3^{-} \),\( {SO}_4^{2-} \)) and electric conductivity (EC) transformed into ordinal classes (1–5). Groundwater SI maps for both drinking and irrigation water generated into a GIS-based map showed that a great part of the study area had a high SI to pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adeyinka Oke S, Fourie F (2017) Guidelines to groundwater vulnerability mapping for sub-Saharan Africa. Groundw Sustain Dev 5:168–177. https://doi.org/10.1016/j.gsd.2017.06.007

    Article  Google Scholar 

  • Ahmed A (2009) Using generic and pesticide DRASTIC GIS-based models for vulnerability assessment of the quaternary aquifer at Sohag, Egypt. Hydrogeol J 17:1203–1121. https://doi.org/10.1007/s10040-009-0433-3

    Article  Google Scholar 

  • Al-Adamat RAN, Foster IDL, Baban SM (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. App Geogr 23:303–324. https://doi.org/10.1016/j.apgeog.2003.08.007

    Article  Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydro geologic settings, U.S. EPA

  • Allouche N, Maanan M, Gontara M, Rollo N, Jmal I, Bouri S (2017) A global risk approach to assessing groundwater vulnerability. Environ Model Softw 88:168–182. https://doi.org/10.1016/j.envsoft.2016.11.023

    Article  Google Scholar 

  • Al-Zabet T (2002) Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environ Geol, 43:203–208. https://doi.org/10.1007/s00254-002-0645-5

    Article  Google Scholar 

  • Amouri M (1994) Etude hydrogéologique du système aquifère de Sidi Bouzid. General Directorate of Water Resources, Tunisia

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84(2):511–525

    Article  Google Scholar 

  • Arauzo M (2016) Vulnerability of groundwater resources to nitrate pollution: a simple and effective procedure for delimiting nitrate vulnerable zones. Sci Total Environ 575:799–812. https://doi.org/10.1016/j.scitotenv.2016.09.139

    Article  Google Scholar 

  • Ayadi A, Mokadem N, Besser H, Khelifi F, Harabi S, Hamad A, Boyce A, Laouar A, Hamed Y (2017) Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern Mediterranean basin (Teboursouk area, NW Tunisia). J Afr Earth Sci 137:208–2017. https://doi.org/10.1016/j.jafrearsci.2017.10.018

    Article  Google Scholar 

  • Ayadi A, Mokadem N, Besser H, Redhaounia B, Khelifi F, Harabi S, Nasri T, Hamed Y (2018) Statistical and geochemical assessment of groundwater quality in Teboursouk area (northwestern Tunisian atlas). Environ Earth Sci 77(349):1–20. https://doi.org/10.1007/s12665-018-7523-2

    Article  Google Scholar 

  • Aydi W, Saidi S, Chalbaoui M, Chaibi S, Ben Dhia H (2013) Evaluation of the groundwater vulnerability to pollution Using an intrinsic and a specific method in a GIS environment : application to the plain of Sidi Bouzid (Central Tunisia). Arab J Sci Eng 38:1815–1831. https://doi.org/10.1007/s13369-012-0417-9

    Article  Google Scholar 

  • Babiker IS, Mohammed MAA, Hiyama T, Kato K (2005) A GIS-based DRATIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ 345:127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005

    Article  Google Scholar 

  • Baki S, Hilali M, Kacimi I, Kassou N, Nouiyti N, Bahassi A (2017) Assessment of groundwater intrinsic vulnerability to pollution in the pre-Saharan areas - the case of the Tafilalet plain (Southeast Morocco). Procedia Earth Planet Sci 17:590–593. https://doi.org/10.1016/j.proeps.2016.12.151

    Article  Google Scholar 

  • Bartzas G, Tinivella F, Medini L, Zaharaki D, Komnitsas K (2015) Assessment of groundwater contamination risk in an agricultural area in North Italy. Inf Process Agric 2:109–129. https://doi.org/10.1016/j.inpa.2015.06.004

    Article  Google Scholar 

  • Besser H, Hamed Y (2019) Causes and risk evaluation of oil and brine contamination in the lower cretaceous continental Intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques. Environ Pollut 253:412–423. https://doi.org/10.1016/j.envpol.2019.07.020

    Article  Google Scholar 

  • Besser H, Mokadem N, Redhouania B, Rhimi R, Khlifi F, Ayadi Y, Omar Z, Bouajila A, Hamed Y (2017) GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in an arid Mediterranean site (SW Tunisia). Arab J Geosci 10(350):1–20. https://doi.org/10.1016/j.jafrearsci.2014.07.0121464-343X/

    Article  Google Scholar 

  • Besser H, Mokadem N, Redhaounia B, Hadji R, Hamad A, Hamed H (2018) Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal feld of southwestern Tunisia. Euro-Mediterranean J Environ Integ 3(16):1–15. https://doi.org/10.1007/s41207-018-0055-z

    Article  Google Scholar 

  • Boukadi N (1994) Structuration de l’Atlas de Tunisie: signification et cinématique des nœuds et zones d’interférences structurales au contact de grands couloirs tectoniques. Dissertation, University of Tunis El Manar

  • Boy-Roura M, Nolan BT, Menció A, Mas-Pla J (2013) Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J Hydrol 505:150–162. https://doi.org/10.1016/j.jhydrol.2013.09.048

    Article  Google Scholar 

  • Brindha K, Elango L (2015) Cross comparison of five popular groundwater pollution vulnerability index approaches. J Hydrol 524:597–613. https://doi.org/10.1016/j.jhydrol.2015.03.003

    Article  Google Scholar 

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Annales des Mines et de Géologie

  • Chihi L (1995) Les fossés néogènes a quaternaires de la Tunisie et de la mer pélagienne : leur étude structurale et leur signification dans le cadre géodynamique de la méditerranée centrale. Dissertation, University of Tunis El Manar

  • Chin WW (1998) The partial least squares approach for structural equation modeling. In: Marcoulides GA (ed) Modern methods for business research. Lawrence Erlbaum Associates, Mahwah, pp 295–336

    Google Scholar 

  • Creuzot G, Ouali J (1989) Extension, diapirisme et compression en Tunisie centrale : le jebel Es Souda. Geodynamique 4:39–48

    Google Scholar 

  • Dlala M (1995) Evolution géodynamique et tectonique superposée en Tunisie: implication sur la tectonique récente et la sismicité. Dissertation, University of Tunis El Manar

  • Elçi A (2017) Calibration of groundwater vulnerability mapping using the generalized reduced gradient method. J Contam Hydrol 207:39–49. https://doi.org/10.1016/j.jconhyd.2017.10.008

    Article  Google Scholar 

  • Engel B, Navulur K, Cooper B, Hahn L (1996) Estimating groundwater vulnerability to nonpoint source pollution from nitrates and pesticides on a regional scale, HydroGIS 96: application of GIS in hydrology and water resources management. IAHS Publ 235:521–526

    Google Scholar 

  • Environmental Systems Research Institute ESRI (2014) ArcMap 10.2.2 software, 380 New York Street. USA: Redlands

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Duijvenbooden W van and Waegeningh HG van (eds): TNOCommittee on hydrological research, the Hague. Vulnerability of soil and groundwater to pollutants, proceedings and information. 38: 69-86

  • General Directorate of the Environment and Quality of Life GDEQL (2014) Study on updating the inventory of the main potential sources of water resources pollution. Report of Ministry of Local Affairs and Environment, Tunisia

  • General Directorate of Water Resources GDWR (2016) Annual directories of groundwater exploitation, Tunisia

  • General Directorate of Water Resources GDWR (2018) Annual directories of groundwater exploitation, Tunisia

  • Hadji R, Limani Y, Demdoum A (2014) Using multivariate approach and GIS applications to predict slope instability hazard case study of Machrouha municipality, NE Algeria. In 2014 1st international Conference on information and communication Technologies for Disaster Management (ICT-DM). IEEE, pp 1-10

  • Hadji R, Chouabi A, Gadri L, Raïs K, Hamed Y, Boumazbeur A (2016) Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria. Arab J Geosci 9(3):192

    Article  Google Scholar 

  • Hadji R, Rais K, Gadri L, Chouabi A, Hamed Y (2017a) Slope failure characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities, Northeast Algeria. Arab J Sci Eng 42(1):281–300

    Article  Google Scholar 

  • Hadji R, Achour Y, Hamed Y (2017b) Using GIS and RS for slope movement susceptibility mapping: comparing AHP, LI and LR methods for the Oued Mellah Basin, NE Algeria. In: Euro-Mediterranean Conference for Environmental Integration. Springer, Cham, pp 1853–1856

    Google Scholar 

  • Hair JF, Hult GTM, Ringle CM, Sarstedt M (2017) A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Hamad A, Baali F, Hadji R, Zerrouki H, Besser H, Mokadem N et al (2018) Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean J Environ Integr 3(1):7

    Article  Google Scholar 

  • Hamed Y (2013) The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (southwestern Tunisia). Arab J Geosci 6(3):697–710

    Article  Google Scholar 

  • Hamed Y (2017) Water resources and Environmental impact assessment in North Africa. European academic publications, ISBN-10: 3330875771, Tunisia

  • Hamed Y, Ahmadi R, Demdoum D, Bouri S, Gargouri I, Ben Dhia H, Al-Gamal S, Laouar R, Choura A (2014) Use of geochemical, isotopic, and age tracer data todevelop modelsof groundwater flow: a case study of Gafsa mining basin-SouthernTunisia. J Afr Earth Sci 100:428–436. https://doi.org/10.1016/j.jafrearsci.2014.07.0121464-343X/

    Article  Google Scholar 

  • Hamed Y, Redhaounia B, Ben Sâad A, Hadji R, Zahri F (2017a) Groundwater inrush caused by the fault reactivation and the climate impact in the mining Gafsa basin (southwestern Tunisia). J Tethys 5(2):154–164

    Google Scholar 

  • Hamed Y, Redhaounia B, Sâad A, Hadji R, Zahri F, Zighmi K (2017b) Hydrothermal waters from karst aquifer: case study of the Trozza basin (Central Tunisia). J Tethys 5(1):33–44

    Google Scholar 

  • Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali B, El Gayar A (2018) Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean J Environ Integr 3(25):1–15. https://doi.org/10.1007/s41207-018-0067-8

    Article  Google Scholar 

  • Hamza MH, Added A, Francés A, Rodríguez R (2007) Validity of the vulnerability methods DRASTIC, SINTACS and SI applied to the study of nitrate pollution in the phreatic aquifer of Metline–Ras Jebel–Raf Raf (northeastern Tunisia). Compt Rendus Geosci 339(7):493–505. https://doi.org/10.1016/j.crte.2007.05.003

    Article  Google Scholar 

  • Jackson IT (1991) A User’s guide to principal components. Wiley, New York

    Book  Google Scholar 

  • Javadi S, Kavehkar N, Mohammadi K (2011) Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability. Water Int 36(6):37–41. https://doi.org/10.1080/02508060.2011.610921

    Article  Google Scholar 

  • Jmal I, Ayed B, Emna B, Allouche N, Saidi S, Hamdi M, Bouri S (2017) Assessing groundwater vulnerability to nitrate pollution using statistical approaches: a case study of Sidi Bouzid shallow aquifer, Central Tunisia. Arab J Geosci 10(364):1–15. https://doi.org/10.1007/s12517-017-3143-5

    Article  Google Scholar 

  • Kadri A (1988) Evolution tectonosédimentaire (Aptien-Quaternaire) des Jebels Koumine, Hamra et Lessouda (Tunisie centrale). Dissertation, University of Paris sud

  • Kazakis N, Voudouris KS (2015) Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J Hydrol 525:13–25. https://doi.org/10.1016/j.jhydrol.2015.03.035

    Article  Google Scholar 

  • Koschel R (1980) Etude hydrogéologique de la nappe de Hajeb Layoun–Jilma–Ouled Askar. Projet de coopération technique Tuniso-Allemande No 6520/7, DRES, Agricultral ministry, pp 01–245

  • Kumar P, Bansod BKS, Debnath SK, Thakur PK, Ghanshyam C (2015) Index-based groundwater vulnerability mapping models using hydrogeological settings: a critical evaluation. Environ Impact Assess Rev 51:38–49. https://doi.org/10.1016/j.eiar.2015.02.001

    Article  Google Scholar 

  • Lathamani R, Janardhana MR, Mahalingam B, Suresha S (2015) Evaluation of aquifer vulnerability Using Drastic model and GIS: a case study of Mysore City, Karnataka, India. Aquat Procedia 4:1031–1038. https://doi.org/10.1016/j.aqpro.2015.02.130

    Article  Google Scholar 

  • Li R, Merchnt JW (2013) Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA. Sci Total Environ 447:32–45. https://doi.org/10.1016/j.scitotenv.2013.01.011

    Article  Google Scholar 

  • Lobo-Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: application to the portuguese aquifer of Monte Gordo. Fouth Inter-Celtic Colloquium on Hydrogeology and Management of Water Resources, Lisbon

  • M’Rabet A (1981) Stratigraphie, sédimentologie et diagenèse des carbonates des séries du Crétacé inférieur de Tunisie central. Dissertation, University of Paris Sud

  • M’Rabet A, Mejri F, Burollet PF, Memmi L, Chandoul H (1995) Recueil des coupes types de Tunisie : Crétacé. ETAP Rep 8A:123

    Google Scholar 

  • Mfumu Kihumba A, Vanclooster M, Ndembo Longo J (2017) Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model. J Afr Earth Sci 126:13–22. https://doi.org/10.1016/j.jafrearsci.2016.11.025

    Article  Google Scholar 

  • Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Laouar R, Sâad S (2016) Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: northern Gafsa basin - Central Tunisia. J Afr Earth Sci 114:174–191. https://doi.org/10.1016/j.jafrearsci.2015.11.010

    Article  Google Scholar 

  • Muhammad AM, Zhonghua T, Dawood AS, Earl B (2015) Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofis Int 54(1):67–81. https://doi.org/10.1016/j.gi.2015.04.003

    Article  Google Scholar 

  • Napolitano P, Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences 235:559–566

  • Ncibi K, Gaaloul N, Gasmi A (2016) Contribution of the multivariate analysis and the GIS for hydrochemical characterization of phreatic aquifer to the plain of Sidi Bouzid (Central Tunisia). IJIAS 15(3):667–684

    Google Scholar 

  • Ncibi K, Mosbahi M, Gaaloul N (2018) Assessment of groundwater risk to Plio-quaternary aquifer’s contamination: semi-arid climate case (Central Tunisia). Desalin Water Treat 124:211–222. https://doi.org/10.5004/dwt.2018.22737

    Article  Google Scholar 

  • Ncibi K, Gherissi R, Abbes M, Melki A, Hadji R, Hamed Y (2019) Natural recharge evaluation of the aquifer system using global hydrologic modeling: application in the Sidi Bouzid basin (Central Tunisia). 2nd International Symposium of Water Resources and Environmental Impact Assessment in North Africa, March 25–27, Sousse, Tunisia

  • Neshat A, Pradhan B, Dadras M (2014) Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour Conserv Recycl 86:74–86. https://doi.org/10.1016/j.resconrec.2014.02.008

    Article  Google Scholar 

  • Neukum C, Azzam R (2009) Quantitative assessment of intrinsic groundwater vulnerability to contamination using numerical simulations. Sci Total Environ 408:245–254. https://doi.org/10.1016/j.scitotenv.2009.09.046

    Article  Google Scholar 

  • National Institute of Meteorology NIM (2018) Monthly climatological table (1975-2018) for Sidi Bouzid station, Tunisia

  • Nixdorf E, Sun Y, Lin M, Kolditz O (2017) Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin. Sci Total Environ 605–606:598–609. https://doi.org/10.1016/j.scitotenv.2017.06.126

    Article  Google Scholar 

  • Ouedraogo I, Defourny P, Vanclooster M (2016) Mapping the groundwater vulnerability for pollution at the pan African scale. Sci Total Environ 544:939–953. https://doi.org/10.1016/j.scitotenv.2015.11.135

    Article  Google Scholar 

  • Pacheco FAL, Fernandes LFS (2013) The multivariate statistical structure of DRASTIC model. J Hydrol 476:442–459. https://doi.org/10.1016/j.jhydrol.2012.11.020

    Article  Google Scholar 

  • Pacheco FAL, Pires LMGR, Santos RMB, Sanches Fernandes LF (2015) Factor weighting in DRASTIC modeling. Sci Total Environ 505:474–486. https://doi.org/10.1016/j.scitotenv.2014.09.092

    Article  Google Scholar 

  • Panagopoulos GP, Antonakos A, Lambrakis NJ (2006) Optimization of the DRASTIC Method for Groundwater Vulnerability Assessment via the Use of Simple Statistical Methods and GIS. Hydrogeol J 14:894–911. https://doi.org/10.1007/s10040-005-0008-x

    Article  Google Scholar 

  • Petelte-Giraude E, Dorfliger N, Crochet P (2000) RISKE : Méthode d’évaluation multicritère de la cartographie de la vulnérabilité des aquifères karstiques. Applications aux systèmes des Fontanilles et Cent-Fonts (Herault, France). Hydrogeology 4:71–88

    Google Scholar 

  • Pisciotta A, Cusimano G, Favara R (2015) Groundwater nitrate risk assessment using intrinsic vulnerability methods: A comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. J Geochem Explor 156:89–100. https://doi.org/10.1016/j.gexplo.2015.05.002

    Article  Google Scholar 

  • Pusatli OT, Camur MZ, Yazicigil H (2009) Susceptibility indexing method for irrigation water management planning: applications to K. Menderes river basin, Turkey. J Environ Manag 90(1):341–347

    Article  Google Scholar 

  • Rabhi M (1999) Contribution à l’étude stratigraphique et analyse de l’évolution géodynamique de l’Axe Nord-Sud et des structures avoisinantes (Tunisie centrale). Dissertation, University of Tunis El Manar

  • Ratkowsky DA (2016) Choosing the number of principal coordinates when using CAP, the canonical analysis of principal coordinates. A J Ecol in the south. Hemisphere 41:1–10. https://doi.org/10.1111/aec.12378

    Article  Google Scholar 

  • Rebolledo B, Gil A, Flotats X, Sanchez Angel J (2016) Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model. J Environ Manag 171:70–80. https://doi.org/10.1016/j.jenvman.2016.01.041

    Article  Google Scholar 

  • Ribeiro L, Pindo JC, Dominguez-Granda L (2017) Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method. Sci Total Environ 574:1674–1683. https://doi.org/10.1016/j.scitotenv.2016.09.004

    Article  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkaline soils. Salinity Laboratory Staff Ed US Department of Agriculture, Washington

    Google Scholar 

  • Ringle CM, Wende S, Becker JM (2015) SmartPLS 3. SmartPLS GmbH, Boenningstedt

    Google Scholar 

  • Sahoo M, Sahoo S, Dhar A, Pradhan B (2016) Effectiveness evaluation of objective and subjective weighting methods for aquifer vulnerability assessment in urban context. J Hydrol 541:1303–1315. https://doi.org/10.1016/j.jhydrol.2016.08.035

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H, Anselme B (2009) A GIS-based susceptibility indexing method for irrigation and drinking water management planning: application to Chebba-Mellouleche aquifer, Tunisia. Agric Water Manag 96(12):1683–1690. https://doi.org/10.1016/j.agwat.2009.07.005

    Article  Google Scholar 

  • Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J Environ Manag 54:39–57. https://doi.org/10.1006/jema.1998.0221

    Article  Google Scholar 

  • Sege J, Ghanem M, Ahmad W, Bader H, Rubin Y (2018) Distributed data collection and web based integration for more efficient and informative groundwater pollution risk assessment. Environ Model Softw 100:278–290. https://doi.org/10.1016/j.envsoft.2017.11.027

    Article  Google Scholar 

  • Shrestha S, Semkuyu DJ, Pandey VP (2016) Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Sci Total Environ 556:23–35. https://doi.org/10.1016/j.scitotenv.2016.03.021

    Article  Google Scholar 

  • Soussi M (2000) The Jurassic of Tunisian atlasic, sedimentary, stratigraphy, dynamics, paleogeography and oil interest. Dissertation, university of Claude Bernard Lyon1

  • Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Assess 18:645–656. https://doi.org/10.1016/S1364-8152(03)00051-3

    Article  Google Scholar 

  • Thompson B (1991) A primer on the logic and use of canonical correlation analysis. Meas Eval Couns Dev 24:80–95

    Google Scholar 

  • Vidal Montes R, Martinez-Graña AM, Martínez Catalán JR, Ayarza Arribas P, Sánchez San Román FJ (2016) Vulnerability to groundwater contamination, SW salamanca, Spain. J Maps 12:147–155. https://doi.org/10.1080/17445647.2016.1172271

    Article  Google Scholar 

  • World Health Organization WHO (2014) Guidelines for Drinking-water Quality, recommendations, third ed. vol 1, Geneva p 668

  • Yang YS, Wang L (2010) Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study. Hydrol Sci J 55(7):1206–1216. https://doi.org/10.1080/02626667.2010.508872

    Article  Google Scholar 

  • Yangui H, Zouari K, Trabelsi R (2011) Recharge mode and mineralization of groundwater in a semi-arid region : Sidi Bouzid plain (Central Tunisia). Environ Earth Sci 63:969–979. https://doi.org/10.1007/s12665-010-0771-4

    Article  Google Scholar 

  • Zahri F, Boukelloul ML, Hadji R, Talhi K (2016) Slope stability analysis in open pit mines of Jebel Gustar career, NE Algeria–a multi-steps approach. Min Sci 23:137−146

  • Zghibi A, Merzougui A, Chenini I, Ergaieg K, Zouhri L, Tarhouni J (2016) Groundwater Vulnerability Analysis of Tunisian coastal aquifer: an application of DRASTIC Index Method in GIS environment. J Afr Earth Sci 2–3:169–181. https://doi.org/10.1016/j.gsd.2016.10.001

    Article  Google Scholar 

  • Zouaghi (2008) Distribution des sequences de depot du Crétacé (Aptien—Maastrichtien) en subsurface : rôle de la déformation tectonique, l’halocinèse et evolution géodynamique : Atlas Central Tunisien. Ph.D. thesis, University of Tunis El Manar, Tunisia

Download references

Acknowledgments

The authors express their grateful thanks to the reviewers who generously contributed their time and expertise to improve the quality of the manuscript. The authors are equally indebted to Christie Nielsen, for providing language assistance during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riheb Hadji.

Additional information

Responsible Editor: Abdullah M. Al-Amri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ncibi, K., Chaar, H., Hadji, R. et al. A GIS-based statistical model for assessing groundwater susceptibility index in shallow aquifer in Central Tunisia (Sidi Bouzid basin). Arab J Geosci 13, 98 (2020). https://doi.org/10.1007/s12517-020-5112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-5112-7

Keywords

Navigation