Skip to main content

Advertisement

Log in

Identification of potential area of recharge using geospatial and multi-criteria decision analysis in the Macta watershed (Western Algeria)

  • ArabGU2016
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In a basin, the increase of the water demand in all sectors creates a giant problem of water scarcity. Precipitation is the only major source to mitigate this problem. However, groundwater recharge is an important hydrological parameter for the quantification of the water budgets quantification in order to achieve a better sustainable groundwater management. In the Macta basin (Western Algeria), the average annual precipitation is insufficient in most of the part especially during summer season. In this region, the recharge is a difficult parameter to calculate due to its variabilities: climatic, geological, hydrogeological, soil, etc. The aim of this study is to propose a new method of identifying potential recharge zone which is applicable to watersheds. For this study and in order to identify the potential groundwater recharge areas in the Macta watershed, a new method has been applied. In this approach, two considerations must be taken into account for the selection of potential recharge areas, remote sensing and GIS which allow the analysis of the water harvesting structure for extracting the information of various features such as lineament, land use/land cover, soil, slope, lithology, drainage, rainfall, etc. In order of importance, we have assigned weights for each feature. Slope and design discharge are parameters’ key in site suitable analysis, so we assigned a maximum weight to this parameters. A possible suitable map site for water harvesting/conservation structures was derived following an analytical hierarchy process (AHP) and multi-criteria decision analysis (MCDA). The data are combined through a multi-criteria analysis to facilitate the spatial analysis and the identification of appropriate zones recharge areas. The results indicate that potential areas of high recharge account for about 32% of the total watershed area. They are mainly located in the south center and appear fragmented in the north of watershed, which mainly match to the permeable areas. These results depict the groundwater potential zones in the study area and provide the information for the proper planning and groundwater resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allison GB (1988) A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge. In: Simmers I (ed) Estimation of natural groundwater recharge. D. Reidel Publishing, Dordrecht, pp 49–72

    Chapter  Google Scholar 

  • Bhuiyan C, Singh RP, Flügel WA (2009) Modelling of ground water recharge potential in the hard-rock Aravalli terrain, India: a GIS approach. Environ Earth Sci 59:929–938

    Article  Google Scholar 

  • Borocco J (1950) Étude géologique des régions de Mascara, Bouhanifia, Ain Fekan. Édit. S. NREPAL, Alger, p 25

  • Bouassria S (1998) Contribution à la cartographie du système aquifère karstique des Monts de Saida. Thèse de magister, CUM de Mascara

  • Clair A (1952) Données sur l'hydrogéologie algérienne. Étude géologique des Monts de Saïda. XIXe congrés. géol. intern. Alger 1952 in la géologie et les problèmes d'eau en Algérie, T II, p 11–13

  • Cook PG, Robinson NI et al (2002) Estimating groundwater recharge in fractured rock from environmental 3H and 36Cl, Clare Valley, South Australia. Water Resour Res 38. https://doi.org/10.1029/2001WR000772

    Article  Google Scholar 

  • Cook PG, Lamontague S, Berhane D, Clark JF (2006) Quantifying groundwater discharge to Cockburn River, Southeastern Australia, using dissolved gas tracers 222Rr and 8 SF6. Water Resour Res 42. https://doi.org/10.1029/2006WR004921

  • Dar IA, Sankar K, Dar MA (2010) Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in Hardrock terrain, Mamundiyar basin. J Hydrol 394:285–295

    Article  Google Scholar 

  • Energoprojekt (2009) Carte des ressources en eau souterraines du Nord de l’Algérie

  • French H, Binley A (2004) Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity. J Hydrol 297:174–186

    Article  Google Scholar 

  • Gburek WJ, Folmar GJ (1999) A ground water recharge field study: site characterization and initial results. Hydrol Process 13:2813–2831

    Article  Google Scholar 

  • Gleeson T (2009) Groundwater recharge, flow and discharge in large crystalline watershed. PhD Thesis, Civil Engineering Department, Queen’s University, Kingston, Ontario, Canada pp 9–45

  • Hayashi M, van der Kamp G, Schmidt R (2003) Focused infiltration of snowmelt water in partially frozen soil under small depressions. J Hydrol 270:214–229

    Article  Google Scholar 

  • Healy R, Cook P (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Henriksen H (1995) Relation between topography and we ll yield in boreholes in crystalline rocks, Sognog Fjordane, Norway. Ground Water 33:635–643

    Article  Google Scholar 

  • Hicks EC, Bungum H, Lindholm CD (2000) Stress inversion of earthquake focal mechanism solutions from onshore and offshore Norway. Nor Geol Tidsskr 80:235–250

    Article  Google Scholar 

  • Hsin-Fu Yeh H-F, Lee C-H, Hsu K-C, Chang P-S (2009) GIS for assessment of groundwater recharge potential zone. Environ Geol 58:185–195

  • Krishnamurthy J, Venkatesa Kumar N, Jayaraman V, Manivel M (1996) An approach to demarcate groundwater potential zones through remote sensing and a geographical information system. Int J Remote Sensing 7:1867–1884

    Article  Google Scholar 

  • Krishnamurthy J, Mani Arul, Jayaraman V, Manive M (2000) Groundwater resources development in hard rock terrain - an approach using remote sensing and GIS techniques. JAG 2(¾): 221-226p

    Article  Google Scholar 

  • Kumar MG, Agarwal AK, Bali R (2008) Delineation of potential sites for water harvesting structures using remote sensing and GIS. J Indian Soc Remote Sens 36(4):323–334

    Article  Google Scholar 

  • Lerner DN (1997) Groundwater recharge. In: Saether OM, de Caritat P (eds) Geochemical processes, weathering and groundwater recharge in catchments. Balkema, Rotterdam, pp 109–150

    Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge. A guide to understanding and estimating natural recharge. IAH Int Contrib Hydrogeol 8. Heinz Heise, Hannover, pp 345

  • Ministère des Ressources en Eau (MRE) (2010) Réalisation de l’étude d’actualisation du plan national de l’eau, mission 2, ressources et demandes volet 2. les ressources en eau souterraine Tome 1. p 121

  • Mokadmi S (2012) Étude hydrologique et modélisation du transport solide en suspension dans le sous bassin versant de l’oued Mekerra. Mém. Magister, U.S.T.O. Algérie

  • Naseef TAU, Thomas R (2016) Identification of suitable sites for water harvesting structures in Kecheri River basin. Procedia Technol 24:7–14

    Article  Google Scholar 

  • Perrodon A (1957) Étude géologique des bassins néogènes sublittoraux de l'Algérie occidentale. Service de la carte géologique de l'Algérie, Bulletin n° 12, p 62–82

  • Praamsma TW, Novakowski KS, Kyser TK, Hall K (2009) Using stable isotope and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer. J Hydrol 366:35–45

    Article  Google Scholar 

  • Ramaswamy SM, Anbazhagan S (1997) Criteria and techniques of detecting site-specific mechanisms for artificial-recharge: a case study from Ayyar basin

  • Rodhe A, Bockgard N (2006) Groundwater recharge in a hard rock aquifer: a conceptual model including surface-loading effects. J Hydrol 330:389–401

    Article  Google Scholar 

  • Saaty RW (1987) The analytic hierarchy process - what it is and how it is used. Math Model 9(3):161–176

    Article  Google Scholar 

  • Saley MB (2003) Système d’informations hydrogéologiques à référence spatiale, discontinuitiés pseudo-images et cartographies thématiques des ressources en eau de la région semimontagneuse de Man (Ouest de la Côte d’Ivoire). Thèse Université de Cocody, p 211

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 35 10(1):110–120

    Article  Google Scholar 

  • Saraf AK, Choudhury PR et al (1998) Integrate remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sen 19:1825–1841

    Article  Google Scholar 

  • Sarah C, Kamel A, Hamdidouche R (2019) Deformation pattern in the El Ahmar area (Bechar Basin, southwestern Algeria): contribution of Lansat 8 OLI and field Measurement, p 50

  • Scanlon B, Healy R, Cook P (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834

    Article  Google Scholar 

  • Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zone: the case of occidental Lebanon. Hydrogeol J 14:433–443

    Article  Google Scholar 

  • Sharma ML, Gander GA, Hunt CG (1980) Spatial variability of infiltration in a watershed. J Hydrol 45:101–122

    Article  Google Scholar 

  • Simmers I (1997) Recharge of phreatic aquifers in (semi-) arid areas. IAH Int Contrib Hydrogeol 19, AA Balkema, Rotterdam, p 277

  • Simmers I, de Vries JJ (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17

    Article  Google Scholar 

  • Solomon DK, Schiff SL, Poreda RJ, Clarke WB (1993) A validation of the 3H/3He method for determining groundwater recharge. Water Resour Res 29:2951–2943

    Article  Google Scholar 

  • Sourisseau B (1973) Etude hydrogéologique de la nappe de Sidi Bel Abbes. Rapport de la direction des études de milieu et de la recherche hydraulique, p 30

  • Thakur GS, Raghuwanshi RS (2008) Perspect and assessment of groundwater resources using remote sensing techniques in and around Choral river basin, Indore and Khargone districts, M.P. J Indian Soc Remote Sens 36(2):217–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Maizi.

Additional information

This article is part of the Topical Collection on Current Advances in Geology of North Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maizi, D., Boufekane, A., Ait Ouali, K. et al. Identification of potential area of recharge using geospatial and multi-criteria decision analysis in the Macta watershed (Western Algeria). Arab J Geosci 13, 127 (2020). https://doi.org/10.1007/s12517-020-5076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-5076-7

Keywords

Navigation