Skip to main content

Advertisement

Log in

Trend analysis and spatiotemporal prediction of precipitation, temperature, and evapotranspiration values using the ARIMA models: case of the Algerian Highlands

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Highlands region, in Algeria, covers an area about 260,000 km2 wide and it is populated by more than 10 million inhabitants, whose activities are overstressing the water resource. As a case study to test a workflow, based on solid proven methodologies, the Algerian highlands climatic assessment was performed by analyzing precipitation, temperature, and evapotranspiration data (from 1985 to 2014), then by computing the aridity index, the standardized precipitation index, and the normalized difference vegetation index (NDVI), and by modeling the stochastic time series in order to predict climatic parameters using autoregressive integrated moving average (ARIMA) models. The seasonal-ARIMA (SARIMA) model performed better than the other models and returned significant p values for all the studied variables. An increasing trend in precipitation was detected for most of the study area, while no significant trend in temperature or evapotranspiration was usually detected. The trends were confirmed by the SARIMA forecasted model (2015–2024). Furthermore, the forecast model results were compared with the NDVI index for the periods of 2010–2014 and 2015–2020. This difference confirmed the results obtained in terms of precipitation trends for the forecast between 2015 and 2024 by an increase in the NDVI index in most of the study area. The proposed workflow could be reliable for water resource management and planning in order to help decision makers to face climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abebe SA (2018) Application of time series analysis to annual rainfall values in Debre Markos Town, Ethiopia. Comput Water, Energy, Environ Eng 7(3):81–94. https://doi.org/10.4236/cweee.2018.73005

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In Petrov BN, Csáki F (eds.), 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, Budapest: Akadémiai Kiadó, pp. 267–281. Republished in Kotz S, Johnson NL, eds. (1992), Breakthroughs in Statistics, I, Springer-Verlag, pp 610–624

  • Alam N, Mishra P, Jana C, Adhikary PP (2014) Stochastic model for drought forecasting for Bundelkhand region in Central India. Indian J Agric Sci 84(1):79–84

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements; FAO Irrigation and Drainage Paper 56. Rome, Italy, FAO

    Google Scholar 

  • Andreoni A, Postorino MN (2006) A multivariate ARIMA model to forecast air transport demand. Proc. Assoc. Eur. Transp. Contrib., pp. 1-14

  • Bahrami M, Bazrkar S, Zarei AR (2018) Modeling, prediction and trend assessment of drought in Iran using standardized precipitation index. J Water Clim Chang 10(1):181–196. https://doi.org/10.2166/wcc.2018.174

    Article  Google Scholar 

  • Bekkoussa B, Meddi M, Jourde H (2008) Forçage climatique et anthropique sur la ressource en eau souterraine d’une région semi-aride : cas de la plaine de Ghriss (Nord-Ouest algérien). Sécheresse 18(3):173–184

    Google Scholar 

  • Belala F, Hirche A, Muller SD, Tourki M, Salamani M, Grandi M, Ait Hamouda T, Boughani M (2018) Rainfall patterns of Algerian steppes and the impacts on natural vegetation in the 20th century. J Arid Land 10(4):561–573. https://doi.org/10.1007/s40333-018-0095-x

    Article  Google Scholar 

  • Benkouider F, Abdelkaderb A, Latifac H, Mohamed E (2013) Spatio temporal analysis of vegetation by vegetation indices from multi-dates satellite images: application to a semi arid area in ALGERIA. Energy Procedia 36:667–675. https://doi.org/10.1016/j.egypro.2013.07.077

    Article  Google Scholar 

  • Bouklia-Hassane R, Yebdri D, Tidjani AEB (2016) Climate change and water resources management of Oran region. J Water Clim Chang 8(2):348–361. https://doi.org/10.2166/wcc.2016.037

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Revised Edition. Holden Day, San Francisco

    Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Brownlee J (2017) Introduction to time series forecasting with python: how to prepare data and develop models to predict the future. Machine Learning Mastery, Pty. Ltd. Vermont Victoria, Australia 367 pp

    Google Scholar 

  • Chander G, Markham BL, Helder BL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903. https://doi.org/10.1016/j.rse.2009.01.007

    Article  Google Scholar 

  • Chen CF, Chang YH, Chang YW (2009) Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica 5(2):125–140. https://doi.org/10.1080/18128600802591210

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 13 February 2020

  • Dimri T, Ahmad S, Sharif M (2020) Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci, 129:149. org/10.1007/s12040-020-01408-x

  • Donat MG et al (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmospheres 118:2098–2118. https://doi.org/10.1002/jgrd.50150

    Article  Google Scholar 

  • Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report, 97-2, Dept. of Atmos. Sci., Colorado State University, Fort Collins, CO, 155 pp

  • Elliott G, Rothenberg TJ, Stock JH (1996) Efficient tests for an autoregressive unit root. Econometrica 64(4):813–836. https://doi.org/10.3386/t0130

    Article  Google Scholar 

  • FAO Food and Agriculture Organization (1989) Arid zone forestry: a guide for field technicians. Rome, Italy

    Google Scholar 

  • Farrar T, Nicholson S, Lare A (1994) The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil moisture, Remote Sensing of Environment 50(2):121–133. https://doi.org/10.1016/0034-4257(94)90039-6

    Article  Google Scholar 

  • Fung KF, Huang YF, Koo CH, Soh YW (2019) Drought forecasting: a review of modelling approaches 2007–2017. J Water Clim Chang 11(3):771–799. https://doi.org/10.2166/wcc.2019.236

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. https://doi.org/10.1029/2006GL025734

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63(2-3):90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031

    Article  Google Scholar 

  • Guan-Jun L, Wen-Chuan W, Jun-Xian Y, Hao W, Dong-Mei X, Jing T (2019) Improved fuzzy weighted optimum curve-fitting method for estimating the parameters of a Pearson Type-III distribution. Hydrol Sci J 64(16):2115–2128. https://doi.org/10.1080/02626667.2019.1620950

    Article  Google Scholar 

  • Hadidi A, Holzbecher E, Zirulia A (2019) Trends in groundwater observation data and implications. Presented at the 13th Gulf Water Conference – Water in the GCC: Challenges and Innovative Solutions. 12–14 March 2019, Kuwait 1944-3994/1944-3986. Desalination Publications 176:94–104. https://doi.org/10.5004/dwt.2020.25502

    Article  Google Scholar 

  • Hayes MJ, Alvord C, Lowrey J (2007) Drought indices. Feature Article from Intermountain West Climate Summary 3:2–6

    Google Scholar 

  • Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 27(3). https://doi.org/10.18637/jss.v027.i03

  • IDOM Ingeniería y Dirección de Obras y Montaje (2005) Gestion intégrée des Ressources en Eau dans la région des Hauts Plateaux VOLUME 4 - Document V: Etude hydrogéologique, 10097 – CD 02.450 – LRB/MJV RE: ERG

  • Jackson RD, Huete AR (1991) Interpreting vegetation indices. J Preventative Vet 11(3-4):185–200. Med. https://doi.org/10.1016/S0167-5877(05)80004-2

    Article  Google Scholar 

  • Keyantash J, Dracup J (2002) The quantification of drought: an evaluation of drought indices. Bull Am Meteorol Soc 83:1167–1180. https://doi.org/10.1175/1520-0477

    Article  Google Scholar 

  • Kim BS, Noh HS, Kim HS (2011) The comparison of estimation methods for the missing rainfall data with spatio-temporal variability. J Wetlands Res 13(2):189–197. https://doi.org/10.17663/JWR.2011.13.2.189

    Article  Google Scholar 

  • Li B, Tao S, Dawson RW (2002) Relations between AVHRR NDVI and ecoclimatic parameters in China. Int J Remote Sens 23(5):989–999. https://doi.org/10.1080/014311602753474192

    Article  Google Scholar 

  • Liu Y, Xue Y (2020) Expansion of the Sahara Desert and shrinking of frozen land of the Arctic. Sci Rep 10:4109. https://doi.org/10.1038/s41598-020-61085-0

    Article  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303. https://doi.org/10.1093/biomet/65.2.297

    Article  Google Scholar 

  • MATE Ministère de l’Aménagement du Territoire et de l’environnement (Ministry of Land Planning and Environment) (2010) Rapport sur la stratégie de lutte contre les changements climatiques, Algiers

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Paper Presented at. In: 8th Conference on Applied Climatology, Amer Meteor Soc, pp 179–184

    Google Scholar 

  • Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Env Res Risk A 19(5):326–339

    Google Scholar 

  • Modarres R, de Paulo Rodrigues da Silva V (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70(2):344–355. https://doi.org/10.1016/j.jaridenv.2006.12.024

    Article  Google Scholar 

  • Moghimi MM, Zarei AR, Mahmoudi MR (2019) Seasonal drought forecasting in arid regions, using different time series models and RDI index. J Water Clim Chang 11(3):633–654. https://doi.org/10.2166/wcc.2019.009

    Article  Google Scholar 

  • Nasiru MO, Olanrewaju SO (2015) Forecasting airline fatalities in the world using a univariate time series model. Int J Stat Appl 5(5):223–230. https://doi.org/10.5923/j.statistics.20150505.06

    Article  Google Scholar 

  • Nedjraoui D, Bédrani S (2008) La désertification dans les steppes algériennes : causes, impacts et actions de lutte. Vertigo - la revue électronique en sciences de l'environnement 8(1). https://doi.org/10.4000/vertigo.5375

  • Nouaceur Z, Murarescu O, Muratoreanu G (2013) Climatic changes in the Maghreb region: the evolution of pluviométric parameters in the Middle Atlas and at its margins (Morocco) and relation to the North Atlantic Oscillation. In: Air and water components of the environment. Actes du colloque de Cluj-Napoca (Roumanie), pp 285–292

    Google Scholar 

  • Nyatuame M, Agodzo SK (2018) Stochastic ARIMA model for annual rainfall and maximum temperature forecasting over Tordzie watershed in Ghana. J Water Land Dev 37(IV-VI):127–140. https://doi.org/10.2478/jwld-2018-0032

    Article  Google Scholar 

  • Ord K, Fildes R, Kourentzes N (2017) Principles of business forecasting 2nd edition. Wessex Press, Inc., New York

    Google Scholar 

  • Pankratz A (1983) Forecasting with univariate Box-Jenkins models. Concepts and cases, Wiley, New York

    Google Scholar 

  • Pereira LS, Cordery I, Iacovides I (2009) Coping with water scarcity. IHP-VI Technical Documents in Hydrology No. 58 UNESCO, Paris

  • Poornima S, Pushpalatha M (2019) Prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units. Atmosphere 10(11):668. https://doi.org/10.3390/atmos10110668

    Article  Google Scholar 

  • Rahman MA, Yunsheng L, Sultana N (2017) Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman’s rho tests and ARIMA model. Meteorog Atmos Phys 129:409–424. https://doi.org/10.1007/s00703-016-0479-4

    Article  Google Scholar 

  • Rouse JW, Haas RH, Scell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancements and retrogradation (Green wave effect) of nature vegetation. NASA/GSFC final report, NASA, Greenbelt, MD.371

  • Sahnoune F, Belhamel M, Zelmat M, Kerbachi R (2013) Climate change in Algeria: vulnerability and strategy of mitigation and adaptation. Energy Procedia 36:1286–1294. https://doi.org/10.1016/j.egypro.2013.07.145

    Article  Google Scholar 

  • Sakizadeh M, Mohamed MMA, Klammler H (2019) Trend analysis and spatial prediction of groundwater levels using time series forecasting and a novel spatio-temporal method. Water Resour Manag 33:1425–1437. https://doi.org/10.1007/s11269-019-02208-9

    Article  Google Scholar 

  • Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J (2014) World drought frequency, duration, and severity for 1951–2010. Int J Climatol 34:2792–2804. https://doi.org/10.1002/joc.3875

    Article  Google Scholar 

  • Stellwagen E, Tashman L (2013) ARIMA: the models of Box and Jenkins. Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters 30:28–33

    Google Scholar 

  • Thom HCS (1968) Direct and inverse tables of the Gamma distribution.” ESSA Technical Report Eds 2. U.S. Department of Commerce, Environmental Data Service, 30 pp

  • Tigkas D, Vangelis H, Tsakiris G (2015) DrinC: a software for drought analysis based on drought indices. Earth Sci Inf 8:697–709. https://doi.org/10.1007/s12145-014-0178-y

    Article  Google Scholar 

  • Tylkowski J, Hojan M (2019) Time decomposition and short-term forecasting of hydrometeorological conditions in the South Baltic coastal zone of Poland. Geosciences 9(2):68. https://doi.org/10.3390/geosciences9020068

    Article  Google Scholar 

  • UNESCO United Nations Educational, Scientific and Cultural Organization (1979) Map of the world distribution of arid regions: explanatory note. MAB Technical Notes, Paris, France

    Google Scholar 

  • Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441. https://doi.org/10.1016/j.jhydrol.2012.11.017

    Article  Google Scholar 

  • Vangelis H, Tigkas D, Tsakiris G (2013) The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J Arid Environ 88:130–140. https://doi.org/10.1016/j.jaridenv.2012.07.020

    Article  Google Scholar 

  • Wang W, Chau K, Xu D, Chen XY (2015) Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour Manag 29:2655–2675. https://doi.org/10.1007/s11269-015-0962-6

    Article  Google Scholar 

  • Wei WWS (1990) Time series analysis. Addison-Wesley Publishing, Reading, MA

    Google Scholar 

  • Zeroual A, Assani AA, Meddi M, Alkama R (2019) Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Clim Dyn 52:227–243. https://doi.org/10.1007/s00382-018-4128-0

    Article  Google Scholar 

  • Zhang X, Hu Y, Zhuang D, Qi Y, Ma X (2009) NDVI spatial pattern and its differentiation on the Mongolian Plateau. J Geogr Sci 19:403–415. https://doi.org/10.1007/s11442-009-0403-7

    Article  Google Scholar 

  • Zhang Y, Yang H, Cui H, Chen Q (2019) Comparison of the ability of ARIMA, WNN and SVM models for drought forecasting in the Sanjiang Plain, China. Nat Resour Res 29:1447–1464. https://doi.org/10.1007/s11053-019-09512-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Guastaldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Responsible Editor: Zhihua Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouznad, IE., Guastaldi, E., Zirulia, A. et al. Trend analysis and spatiotemporal prediction of precipitation, temperature, and evapotranspiration values using the ARIMA models: case of the Algerian Highlands. Arab J Geosci 13, 1281 (2020). https://doi.org/10.1007/s12517-020-06330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06330-6

Keywords

Navigation