Skip to main content

Advertisement

Log in

Quantification of soil losses and multivariate statistics of factors controlling water erosion (Allal Al Fassi watershed, Morocco)

  • Review Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In order to preserve water resources and conserve agricultural land and biodiversity, a precise assessment of soil losses is necessary. It is for this reason that the empirical model of revised RUSLE soil loss equation was applied in order to quantify and describe the rate of erosion in Allal Al Fassi watershed, located in the Middle Atlas mountain chain (Morocco). To understand and define the relationships between water erosion and the factors aggravating its dynamics in Allal Al Fassi watershed, the use of multivariate statistics is in fact an integral part. Sub-models have been adopted to calculate factors of R erosivity, K erodibility, LS slope length and steepness, C soil conservation, and P anti-erosion practices using field data, remote sensing, and GIS (geographic information systems). The map of soil losses resulting from RUSLE model allows us to distinguish five classes. The average annual soil losses are estimated to be 624.07 t ha−1 year−1, with a wide range that goes from 3.57 to 3521.07 t ha−1 year−1 and a median equal to 335.48 t ha−1 y−1. They are greater upstream of watershed, mainly in the eastern part, where slopes are steep and long and soil are highly erodible with little or no development despite very variable conservation and very low to low erosion. However, they are low in areas with low to very low erosion, slope length, and steepness and erodibility, with low anti-erosion practices and strong soil conservation. Multivariate statistical analysis has shown that soil losses in Allal Al Fassi watershed are governed by LS slope length and steepness, K erodibility, and P anti-erosion practices and that the percentages of organic matter, sands, and silts have a significant impact on the variation of soil losses. The latter prove to be important for soils type C1 complex, entisols and inceptisols, soils on dolomitic/calcareous substrate, and soils occupied by matorrals and steppes. RUSLE model has proved useful in quantifying erosion and determining the factors controlling it in Allal Al Fassi watershed, highlighting priority areas that require urgent measures (preventive or remedial) and also where erosion risk reaches irreversible stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Alexakis D, Hadjimitsis D, Agapiou A (2013) Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos Res 131:108–124

    Article  Google Scholar 

  • Almagro M, Vente J, Boix-Fayos C, García-Franco N, Melgares de Aguilar J, González D, Albert SB, Martínez-Mena M (2016) Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems. Mitig Adapt Strateg Glob Chang 21:1029–1043

    Google Scholar 

  • Arnaez J, Lasanta T, Errea M, Ortigosa L (2011) Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: the case of Camero Viejo. Land Degradation Dev 550:537–550. https://doi.org/10.1002/ldr.1032

    Article  Google Scholar 

  • Baali A (1998) Genèse et évolution au plio-quaternaire de deux bassins intramontagneux en domaine carbonaté méditérraneen. Les bassins versants des dayetsAfourgagh et Agoulmam (Moyen Atlas, Maroc). Thèse de doctorat d'état, 326, Université Sidi Mohamed Ben AbdellahFès, Maroc.

  • Baali A, Cheddadi R, Chairi R (2007) Evolution sédimentologique, pédologique et paléoclimatique du bassin lacustre de la dayetAgoulmam (Moyen Atlas, Maroc) depuis le Pléistocène (Soltanien) à l'Holocène. Rev Méditerr l'Environ 1(2):267–280

  • Baja S, Nurmiaty U, Arif S (2014) GIS-based soil erosion modeling for assessing land suitability in the urban watershed of Tallo River, South Sulawesi, Indonesia. Mod Appl Sci 8(4). https://doi.org/10.5539/mas.v8n4p50

  • Boardman J, Poesen J (2006) Soil erosion in Europe: major processes, causes and consequences. Soil Erosion in Europe. Wiley, New York, pp 477–487. https://doi.org/10.1002/0470859202.ch36

    Book  Google Scholar 

  • Borrelli P, Robinson D, Fleischer L, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V, Van Oost K, Montanarella L, Panagos P (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun. https://doi.org/10.1038/s41467-017-02142-7

  • Chafik H (2012) Contribution au développement d’une application Web pour l’évaluation de l’érosion hydrique dans le cadre du Projet Arboriculture Fruitière - Maroc. Mémoire de 3ème cycle. Institut Agronomique et Vétérinaire Hassan II, Rabat

    Google Scholar 

  • Charrière A (1990) Héritage hercynien et évolution géodynamique alpine d'une chaîne intracontinentale : Le Moyen Atlas au sud-est de Fès (Maroc). Thèse de doctorat d'état, 589, Université Paul sud-est, Toulouse III, France

  • Chen H, Takashi O, Wu P (2017) Assessment for soil loss by using a scheme of alterative sub-models based on the RUSLE in a Karst Basin of Southwest China. J Integr Agric 16(2):377–388. https://doi.org/10.1016/S2095-3119(16)61507-1

    Article  Google Scholar 

  • Didon J, Durand-Delga M, Kornprobst J (1973) Homologies géologiques entre les deux rives du détroit de Gibraltar. Bull Soc Géol Fr 7(XV):77–105. https://doi.org/10.2113/gssgfbull.S7-XV.2.77

    Article  Google Scholar 

  • Dietrich W, Dune T (1978) Sediment budget for a small catchment in mountainous terrain. Z Geomorphol N F, Suppl Bd 29:191–206

    Google Scholar 

  • Dumas J (1965) Relation entre l’érodibilité des sols et leurs caractéristiques analytiques. Cahiers ORSTOM. Sér Pédol 3(4):307–333

    Google Scholar 

  • El Kamel T, Baali A, Couscous A, Hakam O, Mesrar H, Babbou C (2020) Variation of soils erodibility according to physico-chemical and biogeographic parameters in Allal Al Fassi watershed, Middle Atlas, Morocco. Moroccan J Chem 8(4):919–935. https://doi.org/10.48317/IMIST.PRSM/morjchem-v8i4.21073

    Article  Google Scholar 

  • Farhan Y, Zregat D, Farhan I (2013) Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: a case study of Kufranja Watershed, Northern Jordan. J Water Resour Protect 5:1247–1261. https://doi.org/10.4236/jwarp.2013.512134

    Article  Google Scholar 

  • Forsberg C (1989) Importance des sédiments dans la compréhension cyclages de nutriments dans les lacs. Hydrobiologia 176(1):263–277

    Article  Google Scholar 

  • Foster G, Wischmeier W (1974) Evaluating irregular slopes for soil loss prediction. Trans Asae 17(2):305–309

    Article  Google Scholar 

  • García-Ruiz J (2010) The effects of land uses on soil erosion in Spain. Catena 81(1):1–11. https://doi.org/10.1016/j.catena.2010.01.001

    Article  Google Scholar 

  • Guerra A, Maes J, Geijzendorffer I, Metzger M (2016) An assessment of soil erosion prevention by vegetation in Mediterranean Europe: current trends of ecosystem service provision. Ecol Indic 60:213–222. https://doi.org/10.1016/j.ecolind.2015.06.043

    Article  Google Scholar 

  • H.C.E.F.L.C.D (2010) Plan National d'Aménagement des Bassins Versants. Haut-Commissariat aux Eaux et Forêts et la Lutte Contre la Désertification. Résume Rapport Synth 52:8–32

    Google Scholar 

  • Hudson NW (1981) Conservation des sols. Batsford Academic and Educational Ltd., Londres, p 324

    Google Scholar 

  • Hussein A, Al Rammahi J, Khassaf S (2018) Estimation of soil erodibility factor in RUSLE equation for euphrates river watershed using GIS. Int J GEOMATE 14(46):164–169. https://doi.org/10.21660/2018.46.87788

    Article  Google Scholar 

  • Jasrotia A, Singh R (2006) Modeling runoff and soil erosion in a catchment area, using the GIS, in the Himalayan region, India. Environ Geol 51(1):29–37. https://doi.org/10.1007/s00254-006-0301-6

    Article  Google Scholar 

  • Jigorel A, Morin J (1994) Bilan de la sédimentation dans une retenue eutrophisée, quinze ans après sa création. Acte du 7ème Congrès International de Géologie de l’Ingénieur, Balkema Edition, Rotterdam 4:2667–2674

    Google Scholar 

  • Kartic Kumar M, Annadurai R, Ravichandran P (2014) Assessment of soil erosion susceptibility in Kothagiri Taluk using Revised Universal Soil Loss Equation (RUSLE) and Geo-Spatial Technology. Int J Sci Res Publ 4(10):9

    Google Scholar 

  • Karydas C, Sekuloska T, Silleos G (2009) Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environ Monit Assess 149(4):19–28. https://doi.org/10.1007/s10661-008-0179-8

    Article  Google Scholar 

  • Krige D (1950) Statisticlalapprocach to some basic mine valuation problems. J Chem Metall Min Soc S Afr 52:119–139

  • Lu D, Li G, Valladares G, Batistella M (2004) Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degrad Dev 15:499–512. https://doi.org/10.1002/ldr.634

    Article  Google Scholar 

  • Martins O (1988) Flux of particulate inorganic matter through the Niger River into the Atlantic Ocean. Neth J Sea Res 22(2):91–97

    Article  Google Scholar 

  • Matheron G (1989) Estimating and choosing. Springer, Berlin. https://doi.org/10.1007/978-3-642-48817-7_7

    Book  Google Scholar 

  • Mati B, Morgan R, Gichuki F, Quinton J, Brewer T, Liniger H (2000) Assessment of erosion hazard with the USLE and GIS: a case study of the upper EwasoNg’iro North basin of Keny. Int J Appl Earth Obs Geoinf 2:78–86. https://doi.org/10.1002/ldr.944

    Article  Google Scholar 

  • Meade R, Yzyk T, Day T (1990) Movement and storage of sediment in rivers of the United States and Canada. Geol N Am 1:255–280

    Google Scholar 

  • Merle G, Nihouarn A, Daligault P (1996) Opérations de restauration et recolonisation naturelle sur la Sélune (Manche) après une opération de vidange de barrages. Hydrologie dans les pays celtiques. Actes du 1er Colloque Interceltique d'Hydrologie et de Gestion des Eaux. Rennes, France. Paris: INRA Editions. 79:275–282

  • Mesrar H (2016) Modélisation, quantification et définition des facteurs contrôlant le risque de l’érosion hydrique. Cas du bassin versant de l’oued Sahla, Rif central, Maroc. Thèse de doctorat d'état, 363, Université Sidi Mohamed Ben Abdellah, Fès

  • Milliman J, Syvitski J (1992) Geomorphic/tectonic control of sediments.discharge of sediment to the ocean : the importance of small mountain rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Moore I, Wilson J (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47(5):423–428

    Google Scholar 

  • Morschel J, Dennis F (2004) Une méthode de cartographie du risque érosif : application aux collines du Terrefort lauragais. M@ppemonde 76(4):11

    Google Scholar 

  • Panagos P, Borrelli P, Meusburger K, Zanden E, Poesen J, Alewell C (2015) Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ Sci Policy 51:23–34. https://doi.org/10.1016/j.envsci.2015.03.012

    Article  Google Scholar 

  • Panagos P, Imeson A, Meusburger K, Borrelli P, Poesen J, Alewell C (2016) Soil conservation in Europe: wish or reality. Land Degrad Dev 27:1547–1551. https://doi.org/10.1002/ldr.2538

    Article  Google Scholar 

  • Poirel A, Vindimian E, Garric J (1994) Gestion des vidanges de réservoirs, mesures prises pour préserver l'environnement et retour d'expérience sur une soixantaine de vidanges. 18ème Congrès des Grands Barrages, Commission Internationale des Grands. Durban: Q.69-R.9, 321–349

  • Prasannakumar V, Vijith H, Abinod S, Geetha N (2011) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. GeoscienceFrontiers 3(2):209–215. https://doi.org/10.1016/j.gsf.2011.11.003

    Article  Google Scholar 

  • Qaini T (2013) Contribution à l’élaboration d’une méthodologie modèle pour l’aménagement antiérosif d’un Bassin Versant au Maroc. Mémoire de recherche, 181, Université Mohamed V Rabat

  • Rango A, Arnoldus H (1987) Aménagement des bassins versants. In : Cahiers techniques de la FAO, pp 1–11

  • Rasolofoson R, Ferraro P, Jenkins C, Jones J (2015) Effectiveness of community forest management at reducing deforestation in Madagascar. Biol Conserv 184:271–277. https://doi.org/10.1016/j.biocon.2015.01.027

    Article  Google Scholar 

  • Renard K, Foster G, Weesies D, McCool D, Yoder D (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook 703: 404. (U. S. USDM, Éd.), Agriculture Research Service, Washington D.C

  • Robinson A (1978) Relationship between soil erosion and sediment delivery. Int Assoc Hydrol Sci 122:159–167

    Google Scholar 

  • Roose E (1994) Introduction à la gestion conservatoire de l'eau, de la biomasse et de la fertilité des sols (GCES). Bull Pédol FAO 70:420

    Google Scholar 

  • Sabaoui A (1998) Rôles des inversions dans l'évolution méso-cénozoîque du Moyen Atlas septentrional (Maroc). L'exemple de la transversale El Menzel-Ribat Al Khayr-Bou Iblane. Thèse de doctorat d'état, 432. Maroc : Université Mohammed V-Agdal, Rabat

  • Schmidt S, Alewell C, Meusburger K (2019) Monthly RUSLE soil erosion risk of Swiss grasslands. J Maps 15(2):247–256. https://doi.org/10.1080/17445647.2019.1585980

    Article  Google Scholar 

  • Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk assessment in Europe. EUR 19044 EN., Office for Official Publications of the European Communities, Luxembourg, 34

  • Van Leeuwen WJD, Sammons G (2004) Vegetation dynamics and soil erosion modelling using remotely sensed data (MODIS) and GIS. Tenth Biennial USDA Forest Service Remote Sensing Applications Conference, 5-9 April 2004, UT. US Department of Agriculture Forest Service Remote Sensing Applications Center, Salt Lake City

  • Walkley A, Black I (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • William R (2011) Monitoring and modeling of soil from Southern Ontaroi basins during pre-development and development activities. Engineering thesis, 246, University of Guelph, Canada

  • Willward A, Mersey J (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 2(38):109–129

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Prediction rainfall erosion losses, a guide to conservation planning Science. U S Dept Agric Agric Handb 537:60

    Google Scholar 

  • Zante P, Collinet J, Leclerc G (2003) Cartographie des risques érosifs sur le bassin versant de la retenue collinaire d’Abdessadok (dorsale tunisienne). Institut National de Recherches en Génie Rural et Eaux et Forêts de Tunis. Direction Générale de l'Aménagement et Conservation des Terres Agricoles, Montpellier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Kamel Touria.

Additional information

Responsible Editor: Stefan Grab

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touria, E.K., Abdennasser, B., Atef, B.A. et al. Quantification of soil losses and multivariate statistics of factors controlling water erosion (Allal Al Fassi watershed, Morocco). Arab J Geosci 13, 1247 (2020). https://doi.org/10.1007/s12517-020-06230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06230-9

Keywords

Navigation