Longitudinal study of land surface temperature (LST) using mono- and split-window algorithms and its relationship with NDVI and NDBI over selected metro cities of India

Abstract

This study was designed to compare the pattern of land surface temperature (LST) over four metro cities of India (Mumbai, Chennai, Delhi, and Kolkata) selected on a longitudinal basis in relation to the built-up and vegetation indices. Two different methods were employed for the retrieval of LST, i.e., mono-window algorithm (MWA) and split-window algorithm (SWA) on the Landsat 8 (OLI/TIRS) datasets, to analyze the spatial pattern of LST over selected cities in relation to normalized differential built-up index (NDBI) and normalized differential vegetation index (NDVI). The result shows that the LST was high over the densely built areas while low over the densely vegetated areas. The highest LST, NDBI, and NDVI were found in Mumbai, while Kolkata records the lowest LST and NDVI. Furthermore, the spatial analysis of LST shows that the LST was high in central parts of all cities except in the case of Delhi where some peripheral areas also record high LST. The comparison from in situ LST (field observations) reveals that the SWA has higher accuracy in the retrieval of LST in maritime areas like Mumbai and Chennai because it reduces the atmospheric effects, while the MWA has higher accuracy for inland areas like Delhi. The spatial relationships of LST with NDVI and NDBI show that vegetation cover has more impact on LST in Delhi while low in Chennai and Mumbai, and the built-up surfaces have a higher impact on LST in Chennai and Mumbai than Kolkata and Delhi.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aithal BH, Chandan MC, Nimish G (2019) Assessing land surface temperature and land use change through spatio-temporal analysis: a case study of select major cities of India. Arab J Geosci 12:3. https://doi.org/10.1007/s12517-019-4547-1

    Article  Google Scholar 

  2. Aldhshan SRS, Shafri HZM (2019) Change detection on land use/land cover and land surface temperature using spatiotemporal data of Landsat: a case study of Gaza Strip. Arab J Geosci 12:443. https://doi.org/10.1007/s12517-019-4597-4

    Article  Google Scholar 

  3. Amirtham LR, Devdas MD, Perumal M (2009) Mapping of micro-urban heat islands and land cover changes: a case in Chennai City, India. Int J Clim Chang: Impacts Response 1:71–84. https://doi.org/10.18848/1835-7156/CGP/v01i02/37258

  4. Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12:313–329. https://doi.org/10.1016/0034-4257(82)90043-8

    Article  Google Scholar 

  5. Asgarian A, Amiri BJ, Sakieh Y (2014) Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosyst 18:209–222. https://doi.org/10.1007/s11252-014-0387-7

    Article  Google Scholar 

  6. Becker F, Li ZL (1990) Towards a local split window method over land surfaces. Int J Remote Sens 11(3):369–393. https://doi.org/10.1080/01431169008955028

    Article  Google Scholar 

  7. Bian T, Ren G, Yue Y (2017) Effect of urbanization on land-surface temperature at an urban climate station in North China. Bound-Layer Meteorol 165:553–567. https://doi.org/10.1007/s10546-017-0282-x

    Article  Google Scholar 

  8. Bonafoni S, Keeratikasikorn C (2018) Land surface temperature and urban density: multiyear modeling and relationship analysis using MODIS and Landsat data. Remote Sens 10(9):1471. https://doi.org/10.3390/rs10091471

    Article  Google Scholar 

  9. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252

    Article  Google Scholar 

  10. Census of India (2011) City census. https://www.census2011.co.in/city.php (Accessed Oct 2019).

  11. Chander G, Markhan BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903

    Article  Google Scholar 

  12. Chen X, Zhao H, Li P, Yin Z (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146

    Article  Google Scholar 

  13. Chen F, Song Y, Su Z, Wang K (2016) Effect of emissivity uncertainty on surface temperature retrieval over urban areas: investigations based on spectral libraries. ISPRS J Photogramm Remote Sens 114:53–65

    Article  Google Scholar 

  14. Chettry V, Surawar M (2020) Urban sprawl assessment in Raipur and Bhubaneswar urban agglomerations from 1991 to 2018 using geoinformatics. Arab J Geosci 13:667. https://doi.org/10.1007/s12517-020-05693-0

    Article  Google Scholar 

  15. Connors JP, Galletti CS, Chow WTL (2013) Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc Ecol 28:271–283. https://doi.org/10.1007/s10980-012-9833-1

  16. Das SK, Hunt JCR (2007) Variability of climate change in India. Curr Sci 93(6):782–788

    Google Scholar 

  17. Deng Y, Wang S, Bai X, Tian Y, Wu L, Xiao J, Chen F, Qian Q (2017) Relationship among land surface temperature and LUCC, NDVI in typical Karst area. Sci Rep 8(1):641

    Article  Google Scholar 

  18. Dhorde A, Dhorde A, Gadgil AS (2009) Long-term temperature trends at four largest cities of India during the twentieth century. J Ind Geophys Union 13(2):85–97

    Google Scholar 

  19. Dutta D, Rahman A, Paul SK, Kundu A (2019) Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environ Monit Assess 191:551. https://doi.org/10.1007/s10661-019-7645-3

    Article  Google Scholar 

  20. Dwivedi A, Khire MV (2018) Application of split-window algorithm to study urban heat island effect in Mumbai through land surface temperature approach. Sustain Cities Soc 41:865–877. https://doi.org/10.1016/j.scs.2018.02.030

    Article  Google Scholar 

  21. Fan C, Myint SW, Kaplan S, Middel A, Zheng B, Rahman A, Huang HP, Brazel A, Blumberg DG (2017) Understanding the impact of urbanization on surface urban heat islands—a longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sens 9(7):672. https://doi.org/10.3390/rs9070672

    Article  Google Scholar 

  22. Franca GB, Cracknell AP (1994) Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastern Brazil. Int J Remote Sens 15:1695–1712. https://doi.org/10.1080/01431169408954201

    Article  Google Scholar 

  23. Fu P, Weng Q (2018) Variability in annual temperature cycle in the urban areas of the United States as revealed by MODIS imagery. ISPRS J Photogramm Remote Sens 146:65–73. https://doi.org/10.1016/j.isprsjprs.2018.09.003

    Article  Google Scholar 

  24. Ghosh S, Chaterjee ND, Dinda S (2019) Relation between urban biophysical composition and dynamics of land surface temperature in the Kolkata metropolitan area: a GIS and statistical based analysis for sustainable planning. Model Earth Syst Environ 5:307–329. https://doi.org/10.1007/s40808-018-0535-9

    Article  Google Scholar 

  25. Grover A, Singh RB (2015) Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): a comparative study of Delhi and Mumbai. Environments 2:125–138

    Article  Google Scholar 

  26. Guha S, Govil H (2020) An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-00657-6

  27. Guha S, Govil H, Dey A, Gill N (2018) Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur J Remote Sens 51(1):667–678. https://doi.org/10.1080/22797254.2018.1474494

    Article  Google Scholar 

  28. Guo Z, Wang SD, Cheng MM, Shu Y (2012) Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images. Procedia Environ Sci 13:935–942. https://doi.org/10.1016/j.proenv.2012.01.087

    Article  Google Scholar 

  29. Ibrahim GRF (2017) Urban land use land cover changes and their effect on land surface temperature: case study using Dohuk City in the Kurdistan region of Iraq. Climate 5(1):13. https://doi.org/10.3390/cli5010013

    Article  Google Scholar 

  30. Jiménez-Muñoz JC, Sobrino JA, Skoković D, Mattar C, Cristóbal J (2014) Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci Remote Sens Lett 11(10):1840–1843

    Article  Google Scholar 

  31. Khadim N, Mourshe M, Bray M (2016) Advances in remote sensing applications for urban sustainability. Euro-Mediterr J Environ Integr 1:7. https://doi.org/10.1007/s41207-016-0007-4

    Article  Google Scholar 

  32. Khandelwal S, Goyal R, Kaul N, Mathew A (2018) Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egypt J Remote Sens Space Sci 21(1):87–94. https://doi.org/10.1016/j.ejrs.2017.01.005

    Article  Google Scholar 

  33. Kumari B, Tayyab M, Shahfahad S, Mallick J, Khan MF, Rahman A (2018) Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi. India. Remote Sens Earth Syst Sci 1:63–78. https://doi.org/10.1007/s41976-018-0004-2

    Article  Google Scholar 

  34. Li ZL, Tang BH, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37. https://doi.org/10.1016/j.rse.2012.12.008

    Article  Google Scholar 

  35. Li H, Zhou Y, Li X, Meng L, Wang X, Wu S, Sodoudi S (2018) A new method to quantify surface urban heat island intensity. Sci Total Environ 624:262–272. https://doi.org/10.1016/j.scitotenv.2017.11.360

    Article  Google Scholar 

  36. Li Y, Schubert S, Kropp JP, Rybski D (2020) On the influence of density and morphology on the urban heat island intensity. Nat Commun 11:2647. https://doi.org/10.1038/s41467-020-16461-9

    Article  Google Scholar 

  37. Liu F, Zhang X, Murayama Y, Morimoto T (2020) Impacts of land cover/use on the urban thermal environment: a comparative study of 10 megacities in China. Remote Sens 12(2):307. https://doi.org/10.3390/rs12020307

    Article  Google Scholar 

  38. Lo CP, Quattrochi DA, Luvall JC (1997) Application of high resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int J Remote Sens 18(2):287–304. https://doi.org/10.1080/014311697219079

    Article  Google Scholar 

  39. Lombardo MA (1985) Ilha de Calor Nas Metrópoles: O Exemplo de São Paulo (in Portuguese). Hucitec, São Paulo, Brazil, pp. 244.

  40. Lu D, Song K, Zeng L, Liu D, Khan S, Zhang B, Wang Z, Jin C (2008) Estimating impervious surface for the urban area expansion: examples from Changchun, Northeast China. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, 36(Part B8), pp 385–391

  41. Malik MS, Shukla JP, Mishra S (2019) Relationship of LST, NDBI and NDVI using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India. Indian J Geo Marine Sci 48:25–31

    Google Scholar 

  42. Mallick J, Rahman A (2012) Impact of population density on surface temperature and micro-climate of Delhi. Curr Sci 102(12):1708–1713

    Google Scholar 

  43. Mallick J, Rahman A, Singh CK (2013) Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv Space Res 52(4):639–655

    Article  Google Scholar 

  44. Mandal J, Ghosh N, Mukhopadhyay A (2019) Urban growth dynamics and changing land-use land-cover of megacity Kolkata and its environs. J Indian Soc Remote Sens 47:1707–1725. https://doi.org/10.1007/s12524-019-01020-7

    Article  Google Scholar 

  45. Masoudi M, Tan PY, Liew SC (2019) Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecol Indic 98:200–213

    Article  Google Scholar 

  46. McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37(9):L09705. https://doi.org/10.1029/2010GL042845

    Article  Google Scholar 

  47. McMillin LM (1975) Estimation of sea surface temperatures from two infrared window measurements with different absorption. J Geophys Res 80:5113–5117. https://doi.org/10.1029/JC080i036p05113

    Article  Google Scholar 

  48. Mohajerani A, Bakaric J, Jeffrey-Bailey T (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J Environ Manag 197:522–538. https://doi.org/10.1016/j.jenvman.2017.03.095

    Article  Google Scholar 

  49. Mujabar S, Rao V (2018) Estimation and analysis of land surface temperature of Jubail industrial city, Saudi Arabia, by using remote sensing and GIS technologies. Arab J Geosci 11:742. https://doi.org/10.1007/s12517-018-4109-y

    Article  Google Scholar 

  50. Munslow B, O'Dempsey T (2010) Globalisation and climate change in Asia: the urban health impact. Third World Q 31(8):1339–1356. https://doi.org/10.1080/01436597.2010.541082

    Article  Google Scholar 

  51. Mwangi PW, Karanja FN, Kamau PK (2018) Analysis of the relationship between land surface temperature and vegetation and built-up indices in Upper-Hill, Nairobi. J Geosci Environ Prot 6:1–16. https://doi.org/10.4236/gep.2018.61001

    Article  Google Scholar 

  52. Ogashawara I, Bastos V (2012) A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sens 4(11):3596

    Article  Google Scholar 

  53. Omidvar H, Bou-Zeid E, Chiaramonte M (2019) Physical determinants and reduced models of the rapid cooling of urban surfaces during rainfall. J Adv Model Earth Syst 11:1364–1380. https://doi.org/10.1029/2018MS001528

    Article  Google Scholar 

  54. Patra S, Sahoo S, Mishra P, Mahapatra SC (2018) Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J Urban Manag 7(2):70–84

    Article  Google Scholar 

  55. Pramanik S, Punia M (2019) Land use/land cover change and surface urban heat island intensity: source–sink landscape-based study in Delhi, India. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00515-0

  56. Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22(18):3719–3746

    Article  Google Scholar 

  57. Rahman A, Aggarwal SP, Netzband M, Fazal S (2011) Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE J Select Top Appl Earth Obs Remote Sens 4(1):56–64. https://doi.org/10.1109/jstars.2010.2084072

    Article  Google Scholar 

  58. Rangoli G, Keshari AK, Gosain AK, Khosa R (2018) A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: a case study of the Beas River Basin, India. Pertanika J Sci Technol 26(2):829–840

    Google Scholar 

  59. Sadhukhan I, Lohar D, Pal DK (2000) Pre-monsoon season rainfall variability over Gangetic West Bengal and its neighbourhood, India. Int J Climatol 20(12):1485–1493

    Article  Google Scholar 

  60. Sahana M, Dutta S, Sajjad H (2019) Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. Int J Urban Sci 23(2):205–225. https://doi.org/10.1080/12265934.2018.1488604

    Article  Google Scholar 

  61. Sekertekin A, Bonafoni S (2020) Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens 12(2):294. https://doi.org/10.3390/rs12020294

    Article  Google Scholar 

  62. Sharpe DM, Stearns F, Leitner LA, Dorney JR (1986) Fate of natural vegetation during urban development of rural landscapes in south eastern Wisconsin. Urban Ecol 3–4(9):267–287

    Article  Google Scholar 

  63. Skokovic D, Sobrino JA, Jimenez-Muñoz JC, Soria G, Julien Y, Mattar C, Jordi C (2014) Calibration and validation of land surface temperature for LANDSAT8 TIRS sensor. Land product validation and evolution, ESA/ESRIN Frascati (Italy), pp 6–9

  64. Sobrino JA, Jimenez-Munoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90:434–440

    Article  Google Scholar 

  65. Su W, Gu C, Yang G (2010) Assessing the impact of land use/land cover on urban heat island pattern in Nanjing City, China. J Urban Plan Dev-ASCE 136(4):365–372

    Article  Google Scholar 

  66. Sultana S, Satyanarayana ANV (2018) Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: impact of urbanization. Int J Remote Sens 39(20):6692–6730. https://doi.org/10.1080/01431161.2018.1466072

    Article  Google Scholar 

  67. Takagi M, Gyokusen K (2004) Light and atmospheric pollution affect photosynthesis of street trees in urban environments. Urban For Urban Green 2:167–171

    Article  Google Scholar 

  68. TOI (2018) Mercury may slide after a storm on Monday: Met Read more at: http://timesofindia.indiatimes.com/articleshow/63164175.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppstt (Accessed Nov 2019)

  69. United Nations (2014) World population prospects (highlights), 2014 revision. Department of Economic and Social Affairs, New York. (Accessed Oct 2019)

  70. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384. https://doi.org/10.1016/S0034-4257(03)00079-88

    Article  Google Scholar 

  71. Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens 34(4):892–905

    Article  Google Scholar 

  72. Wang Y, Zhang Y, Ding N, Qin K, Yang X (2020) Simulating the impact of urban surface evapotranspiration on the urban heat island effect using the Modified RS-PM model: a case study of Xuzhou, China. Remote Sens 12(3):578. https://doi.org/10.3390/rs12030578

    Article  Google Scholar 

  73. Weng Q (2001) A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int J Remote Sens 22:1999–2014

    Google Scholar 

  74. Wonorahardjo S, Sutjahja IM, Mardiyati Y, Andoni H, Thomas D, Achsani RA, Steven S (2020) Characterising thermal behaviour of buildings and its effect on urban heat island in tropical areas. Int J Energy Environ Eng 11:129–142. https://doi.org/10.1007/s40095-019-00317-0

    Article  Google Scholar 

  75. Xiao H, Weng Q (2007) The impact of land use and land cover changes on land surface temperature in a karst area of China. J Environ Manag 85:245–257. https://doi.org/10.1016/j.jenvman.2006.07.016

    Article  Google Scholar 

  76. Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1(1):9–23. https://doi.org/10.1093/jpe/rtm005

    Article  Google Scholar 

  77. Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sensors 2017:1–17. https://doi.org/10.1155/2017/1353691

    Article  Google Scholar 

  78. Yang C, He X, Yan F, Yu L, Bu K, Yang J, Chang L, Zhang S (2017) Mapping the influence of land use/land cover changes on the urban heat island effect—a case study of Changchun. China. Sustainability 9(2):312. https://doi.org/10.3390/su90203122

    Article  Google Scholar 

  79. Yu X, Guo X, Wu Z (2014) Land surface temperature retrieval from Landsat 8 TIRS—comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens 6(10):9829–9852

    Article  Google Scholar 

  80. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24:583–594. https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  81. Zhang D, Tang R, Tang BH, Wu H, Li ZL (2015) A simple method for soil moisture determination from LST–VI feature space using nonlinear interpolation based on thermal infrared remotely sensed data. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(2):638–648

  82. Zhang F, Tiyip T, Kung H, Johnson VC, Maimaitiyiming M, Zhou M, Wang J (2016) Dynamics of land surface temperature (LST) in response to land use and land cover (LULC) changes in the Weigan and Kuqa river oasis, Xinjiang, China. Arab J Geosci 9:499. https://doi.org/10.1007/s12517-016-2521-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Survey of India for providing the Toposheet from which the city maps were obtained and the USGS Earth Explorer server (https://earthexplorer.usgs.gov/) for providing the satellite data. The authors are also thankful to Mr Azhar Nawaz of the Department of English, Aligarh Muslim University, Aligarh, India, for helping in improving English and the grammatical errors from the manuscript. The authors are highly thankful to the learned reviewer for their scholarly comments which lead to significant improvement of the MS.

Funding

The lead author is thankful to the University Grant Commission (UGC) for providing the Junior Research Fellowship (JRF) for the doctoral research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Atiqur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahfahad, Kumari, B., Tayyab, M. et al. Longitudinal study of land surface temperature (LST) using mono- and split-window algorithms and its relationship with NDVI and NDBI over selected metro cities of India. Arab J Geosci 13, 1040 (2020). https://doi.org/10.1007/s12517-020-06068-1

Download citation

Keywords

  • Land surface temperature (LST)
  • Mono- and split-window algorithms
  • NDVI
  • NDBI
  • Longitudinal analysis
  • Metro cities—India