Skip to main content
Log in

Preliminary tsunami hazard map for Africa

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Major earthquakes display a significant tsunamigenic seismic activity (with Mw > 7) that may affect Africa continent. These events are from the far-field tectonics plates or even nearby tectonics boundaries. The main target of this study was to choose the most dangerous tsunamigenic zones according to the historical tsunami events and to update the tsunami hazard map of Africa published in UNISDR (2009). This was done by using nested bathymetry grids to reevaluate the maximum wave height using high-resolution (15 arcs per second) data near the African coastlines. Mirone version 2.10 software is used in these calculations. Four tsunamigenic zones sources affecting the African coastal zones have been tested at Andaman-Sumatra subduction zone, Makran trench zone, Western and Eastern Hellenic arcs. These tsunamigenic source zones were responsible for huge tsunamis generated from large historical earthquakes on 26 December 2004; 27 November 1945; 8 August 1303; and 21 July 365. Two to 4 m was the calculated maximum wave height resulted from the scenario 1 which arrived to the coasts of Tanzania, South Africa, and South Madagascar, while scenario 2 resulted in maximum wave height of 1–2 m toward the Somalian coast. The scenarios 3 and 4 were responsible for the maximum wave height of 2–4 m at the Egyptian and Libyan coasts. Preparing an early warning system will be required necessarily for the whole of Africa to overcome possible future high tsunami risk to the African coastal cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu al-Fida IIH (1907) The concise history of humanity or chronicles (Tarikhu ’al-Mukhtasar fi Akhbar al-Bashar in 1329), Al-Husayniyah Press, Cairo, 2 volumes, 1112 pp., 1907 (in Arabic)

  • Aida J, Hikichi H, Matsuyama Y, Sato Y, Tsuboya T, Tabuchi T, Koyama K, Subramanian SV, Kondo K, Osaka K, Kawachi I (2017) Risk of mortality during and after the 2011 Great East Japan Earthquake and Tsunami among older coastal residents. Sci Rep 7:16591. https://doi.org/10.1038/s41598-017-16636-3

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M.

  • Ambraseys N (2009) Earthquakes in the Mediterranean and Middle East a multidisciplinary study of seismicity up to 1900. Cambridge University Press, p 947 ISBN: 9780521872928

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Britain, p 219

    Google Scholar 

  • Aniel-Quiroga Í, Quetzalcóatl O, González M, Louise G (2018) Tsunami run-up estimation based on a hybrid numerical flume and a parameterization of real topobathymetric profiles, Nat Hazards Earth Syst Sci, vol. 18 (5), pp. 1469-1491. https://doi.org/10.5194/nhess-18-1469-2018

  • Baptista MA, Miranda JM, Chiericci F, Zitellini N (2003) New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling. Nat Hazards Earth Syst Sci 3:333–340

    Article  Google Scholar 

  • Baptista M, Miranda J, Batlló J, Lisboa F, Luis J, Macià R (2016) New study on the 1941 Gloria Fault Earthquake and Tsunami. Nat Hazards Earth Syst Sci:1–17. https://doi.org/10.5194/nhess-2016-130

  • Ben Menahem A (1979) Earthquake catalogue for the Middle East (92 B.C. to 1980 A.D.). Bol Geof Teored Applic 2I:245–310

    Google Scholar 

  • Bilham R, Engdahl R, Fedl N, Satyabala SP (2005) Partial and complete rupture of the Indo- Andaman plate boundary 1847-2004. Seismol Res Lett 76:299–311

    Article  Google Scholar 

  • Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res 97:449–478

    Article  Google Scholar 

  • Cita MB, Camerlenghi A, Rimoldi B (1996) Deep-sea tsunami deposits in the Eastern Mediterranean: new evidence and depositional models. Sediment Geol J 104:155–173

    Article  Google Scholar 

  • CMT catalogue: centroid moment tensor catalogue of Harvard (n.d.) http://www.seismology.harvard.edusearch.html. Accessed Nov 2019

  • Demets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys Res Lett 20:2191–2194

    Article  Google Scholar 

  • Duputel Z, Rivera L, Kanamori H, Hayes GW (2012) phase source inversion for moderate to large earthquakes (1990–2010). Geophys J Int 189(2):1125–1147

    Article  Google Scholar 

  • Fritz HM, Borrero JC (2006) Somalia field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra 22:219–233

    Article  Google Scholar 

  • Garfunkel Z (2004) Origin of the Eastern Mediterranean Basin: a revaluation. Tectonophysics 391(1–4):11–34

    Article  Google Scholar 

  • Ghose R, Yoshioka S, Oike K (1990) Three-dimensional numerical simulation of the subduction dynamics in the Sunda arc region, Southeast Asia. Tectonophysics 181:223–255

    Article  Google Scholar 

  • Gusiakev VK, Dunbar PK, Arcos N (2019) Twenty-five years (1992-2016) of global tsunamis: statistical and analytical overview. Pure Appl Geophys 176:2795–2807. https://doi.org/10.1007/s00024-019-02113-7

    Article  Google Scholar 

  • Hamouda AZ (2006) Numerical computations of 1303 tsunamigenic propagation towards Alexandria, Egyptian coast. J Afr Earth Sci 44:37–44. https://doi.org/10.1016/j.jafrearsci.2005.11.005

    Article  Google Scholar 

  • Heck NH (1947) List of seismic sea waves. Bull Seismol Soc Am 37(4):269–286

    Google Scholar 

  • Heidarzadeh M, Satake K (2017) A combined earthquake-landslide source model for the tsunami from the 27 November 1945 Mw8.1 Makran earthquake. Bull Seismol Soc Am 107(2):1033–1040. https://doi.org/10.1785/0120160196

    Article  Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH, Yalciner AC (2009) Preliminary estimation of the 605 tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 48(2):229–243. https://doi.org/10.1007/s11069-008-9259-x

    Article  Google Scholar 

  • Imamura F (1997) Numerical method of tsunami numerical simulation with leap-frog scheme. Time Project. IUGG/ IOC, UNESCO, Paris.

  • IOC, IHO, and BODC (2003) Centenary edition of the GEBCO digital atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the general bathymetric chart of the oceans, British Oceanographic Data Centre, Liverpool, last update 2014 and 2019.

  • Jaiswal RK, Singh AP, Rastogi BK (2009) Simulation of the Arabian Sea tsunami propagation generated due to 1945 Makran earthquake and its effect on western parts of Gujarat (India). Nat Hazards 48(2):245–258

    Article  Google Scholar 

  • Løvholt F, Zamora N, Glimsdal S, Yetman G Smebye H (2009) ‘Tsunamis’, in Global assessment report on disaster risk reduction, pp 31-36.

  • Luis JF (2007) Mirone: a multi-purpose tool for exploring grid data. Comput Geosci 33:31–41

    Article  Google Scholar 

  • Mader CL (2004) Numerical modeling of water waves, second edn. CRC Press, New York

    Book  Google Scholar 

  • Mcclusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern TM (105):5695–5719.

  • McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J Roy Astron Soc 30:109–l85

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Okal EA, Synolakis CE (2008) Far-field tsunami hazard from mega-thrust earthquakes. Geophys J Int 172(3):995–1015. https://doi.org/10.1111/j.1365-246X.2007.03674.x Retrieved 2009-10-30

    Article  Google Scholar 

  • Okal EA, Fritz HM, Sladen A (2009) 2004 Sumatra-Andaman tsunami surveys in the Comoro islands and Tanzania and regional tsunami hazard from future Sumatra events. S Afr J Geol 112:343–358

    Article  Google Scholar 

  • Page WD, Alt JN, Cluff LS, Plafker G (1979) Evidence for the recurrence of large-magnitude earthquakes along the Makran Coast of Iran and Pakistan. Tectonophysics 52:533–547

    Article  Google Scholar 

  • Pagnoni G, Armigliato A, Tinti S (2015) Scenario-based assessment of buildings’ damage and population exposure due to earthquake-induced tsunamis for the town of Alexandria, Egypt. Nat Hazards Earth Syst Sci 15:2669–2695

    Article  Google Scholar 

  • Pino NA, Giardini D, Boschi E (2000) The December 28, 1908, Messina Straits, southern Italy, and earthquake: waveform modeling of regional seismograms. J Geophys Res

  • Salama A, Meghraoui M, El Gabry M, Maouche S, Hussein MH, Korrat I (2018) Paleotsunami deposits along the coast of Egypt correlate with historical earthquake records of Eastern Mediterranean. Nat Hazards Earth Syst Sci 18(8):2203–2219

    Article  Google Scholar 

  • Schluter HU, Gaedicke C, Roeser HA, Schreckenberger B, Meyer H, Reichert C, Djajadihardha Y, Prexl A (2002) Tectonics features pf the Southern Sumatra-western Java forearc of Indonesia. Tectonics Journal 21(5):1–15

    Google Scholar 

  • Shaw B, Ambraseys NN, England PC, Floyd MA, Gorman GJ, Higham TFG, Jackson JA, Nocquet J-M, Pain CC, Piggott MD (2008) Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nat Geosci 1:268–276. https://doi.org/10.1038/ngeo151

    Article  Google Scholar 

  • Soloviev SL, Solovieva ON, Go CN, Kim KS, Shchetnikov NA (2000) Tsunamis in the Mediterranean Sea 2000 B.C.-2000 A.D. Kluwer Academic, Dordrecht/ Boston/ London, p 237 ISBN: 0-7923-6548-8

    Book  Google Scholar 

  • Stiros SC (2010) The 8.5+ magnitude, AD365 earthquake in Crete: coastal uplift, topography changes, archaeological and historical signature. Quat Int 216:54–63

    Article  Google Scholar 

  • Stiros SC, Drakos A (2006) A fault-model for the tsunami-associated, magnitude> 8.5 Eastern Mediterranean, AD 365 earthquake. Z Geomorphol 146:125–137

    Google Scholar 

  • Synolakis CE, Okal EA, Bernard E (2007) The mega tsunami of December 26, 2004. Bridge 35(2):26–35

    Google Scholar 

  • UN-ISDR (2009) Global assessment report on disaster risk reduction. ISBN: 9789211320282, pp 207. http://www.preventionweb.net/english/hyogo/gar/report/index.php. Accessed Nov 2019

  • USGS (2004) https://earthquake.usgs.gov/earthquakes/eventpage/official20041226005853450_30/moment-tensor. Accessed Nov 2019

  • Xie J, Nistor I, Murty T (2012) Tsunami risk for Western Canada and numerical modelling of the Cascadia fault tsunami. Nat Hazards J 60:149–159

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to NRIAG administrators and IGCP-659 project for their help and facilities. We are thankful to Prof. Joaquim Luis University of Algarve, Portugal, for the open-source Mirone software used in modeling in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asem Salama.

Additional information

This article is part of the Topical Collection on Seismic Hazard and Risk in Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, A., ElGabry, M., Meghraoui, M. et al. Preliminary tsunami hazard map for Africa. Arab J Geosci 13, 981 (2020). https://doi.org/10.1007/s12517-020-06010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06010-5

Keywords

Navigation