Skip to main content

Enigma of ferruginous inclusions in Permian evaporites

Abstract

We studied Fe-rich microspherules and microparticles found as inclusions within a gypsum host rock, sourced from the Kamsko-Ustyinskoe gypsum field (Republic of Tatarstan, Russia). Using both in situ and destructive microanalysis techniques (micro CT, XRF, SEM, EDS, and Raman spectroscopy), we examined a range of different possibilities of their origin and concluded that studied Upper Roadian microinclusions have an extraterrestrial genesis. This conclusion is based upon the similarity of microspherules both to the diagenetically altered I-type cosmic spherules and meteorite ablation spherules previously reported from modern and ancient sediments: spherical morphologies and sizes 10–150 μm, dendritic textures exhibiting cruciform or cellular arrangements, large sub-circular cavities representing the former position of weathered metal beads, irregular cavity networks, representing vesicles and vesicle networks of residual trapped volatile gases, and Fe-rich magnetite mineralogy. All microparticles and microspherules have experienced diagenetic alteration, connected with a total loss of Ni in the corrosion process and often recrystallization with Mn enrichment. Based on extraordinary concentration of extraterrestrial microspherules and quite similar to them in composition microparticles both mixed in the thin interlayer of studied sample, we hypothesized their meteor ablation origin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Andreichev VL, Ronkin YL, Lepikhina OP, Litvinenko AF (2007) Isotopic age of the Permian-Triassic basaltic magmatism in the Polar Cis-Urals: Rb-Sr and Sm-Nd data. Stratigr Geol Correl 15:258–266. https://doi.org/10.1134/s0869593807030021

    Article  Google Scholar 

  2. Badyukov DD, Raitala J (2012) Ablation spherules in the Sikhote Alin meteorite and their genesis. Petrology. 20:520–528. https://doi.org/10.1134/S086959111206001X

    Article  Google Scholar 

  3. Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology. 24:259. https://doi.org/10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2

    Article  Google Scholar 

  4. Barton MD, Johnson DA (2000) Alternative brine sources for Fe-oxide (-Cu-Au) systems: implications for hydrothermal alteration and metals. Hydrothermal iron oxide copper-gold. Relat Depos A Glob Perspect 1:43–60

    Google Scholar 

  5. Berger A, Herwegh M, Schwarz J-O, Putlitz B (2011) Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D. J Struct Geol 33:1751–1763. https://doi.org/10.1016/j.jsg.2011.07.002

    Article  Google Scholar 

  6. Bi D, Morton RD, Wang K (1993) Cosmic nickel-iron alloy spherules from Pleistocene sediments, Alberta, Canada. Geochim Cosmochim Acta 57:4129–4136. https://doi.org/10.1016/0016-7037(93)90359-5

    Article  Google Scholar 

  7. Bird JM, Weathers MS (1977) Native iron occurrences of Disko Island, Greenland. J Geol 85:359–371. https://doi.org/10.1086/628305

    Article  Google Scholar 

  8. Boas FE, Fleischmann D (2012) CT artifacts: causes and reduction techniques. Imaging Med 4:229–240. https://doi.org/10.2217/iim.12.13

  9. Bones DL, Carrillo-Sánchez JD, Kulak AN, Plane JMC (2019) Ablation of Ni from micrometeoroids in the upper atmosphere: experimental and computer simulations and implications for Fe ablation. Planet Space Sci 179:104725. https://doi.org/10.1016/j.pss.2019.104725

    Article  Google Scholar 

  10. Bornhold BD, Bonardi M (1979) Magnetic spherules in Arctic Ocean sediments. Can J Earth Sci 16:1778–1788

    Article  Google Scholar 

  11. Breen JP, Rubin AE, Wasson JT (2016) Variations in impact effects among IIIE iron meteorites. Meteorit Planet Sci 51:1611–1631. https://doi.org/10.1111/maps.12685

    Article  Google Scholar 

  12. Brothers LA, Engel MH, Elmore RD (1996) The late diagenetic conversion of pyrite to magnetite by organically complexed ferric iron. Chem Geol 130:1–14. https://doi.org/10.1016/0009-2541(96)00007-1

    Article  Google Scholar 

  13. Brownlee DE, Pilachowski LB, Hodge PW (1979) Meteorite mining on the ocean floor. In: Lunar and Planetary Science conference. pp. 157–158

  14. Brownlee DE, Bates B, Beauchamp RH (1983) Meteor ablation spherules as chondrule analogs. In: Chondrules and their Origins. pp. 10–25

  15. Brownlow AE, Hunter W, Parkin DW (1966) Cosmic spherules in a Pacific Core. Geophys J Int 12:1–13. https://doi.org/10.1111/j.1365-246X.1966.tb03096.x

    Article  Google Scholar 

  16. Bruun AF, Langer E, Pauly H (1955) Magnetic particles found by raking the deep sea bottom. Deep-Sea Res 2:230–246. https://doi.org/10.1016/0146-6313(55)90027-7

    Article  Google Scholar 

  17. Cadle RD, Lazrus AL, Shedlovsky JP (1969) Comparison of particles in the fume from eruptions of Kilauea, Mayon, and Arenal volcanoes. J Geophys Res 74:3372–3378. https://doi.org/10.1029/jc074i013p03372

    Article  Google Scholar 

  18. Crozier WD (1960) Black, magnetic spherules in sediments. J Geophys Res 65:2971–2977. https://doi.org/10.1029/JZ065i009p02971

    Article  Google Scholar 

  19. Davidson J, Genge MJ, Mills AA, et al (2007) Ancient cosmic dust from Triassic halite. In: Lunar and Planetary Science XXXVIII

  20. Dredge I, Parnell J, Lindgren P, Bowden S (2010) Elevated flux of cosmic spherules (micrometeorites) in Ordovician rocks of the Durness group, NW Scotland. Scott J Geol 46:7–16. https://doi.org/10.1144/0036-9276/01-394

    Article  Google Scholar 

  21. Drouin D, Couture AR, Joly D et al (2007) CASINO V2.42 - a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning. https://doi.org/10.1002/sca.20000

  22. Duprat J, Engrand C, Maurette M, Kurat G, Gounelle M, Hammer C (2007) Micrometeorites from Central Antarctic snow: the CONCORDIA collection. Adv Sp Res 39:605–611. https://doi.org/10.1016/j.asr.2006.05.029

    Article  Google Scholar 

  23. Esri (2016) “World Topo Base” [basemap]. Scale Not Given."World Topo Base". https://www.arcgis.com/home/item.html?id=3a75a3ee1d1040838f382cbefce99125. Accessed 31 Mar 2020

  24. Fredriksson K, Gowdy R (1963) Meteoritic debris from the Southern California desert. Geochim Cosmochim Acta 27:241–243. https://doi.org/10.1016/0016-7037(63)90025-5

    Article  Google Scholar 

  25. Genge MJ (2017) Vesicle dynamics during the atmospheric entry heating of cosmic spherules. Meteorit Planet Sci 52:443–457. https://doi.org/10.1111/maps.12805

    Article  Google Scholar 

  26. Genge MJ, Engrand C, Gounelle M, Taylor S (2008) The classification of micrometeorites. Meteorit Planet Sci 43:497–515. https://doi.org/10.1111/j.1945-5100.2008.tb00668.x

    Article  Google Scholar 

  27. Genge MJ, Davies B, Suttle MD, van Ginneken M, Tomkins AG (2017) The mineralogy and petrology of I-type cosmic spherules: implications for their sources, origins and identification in sedimentary rocks. Geochim Cosmochim Acta 218:167–200. https://doi.org/10.1016/j.gca.2017.09.004

    Article  Google Scholar 

  28. Glukhov M, Kadyrov R, Sungatullin R, et al (2020) Possibilities for correlation of Permian evaporites based on cosmic microspherules. In: Proceedings Kazan Golovkinsky Stratigraphic Meeting «Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources». In press

  29. Grachev AF, Korchagin OA, Kollmann HA, Pechersky DM, Tsel'movich VA (2005) A new look at the nature of the transitional layer at the K/T boundary near Gams, Eastern Alps, Austria, and the problem of the mass extinction of the biota. Russ J Earth Sci 7:1–45. https://doi.org/10.2205/2005ES000189

    Article  Google Scholar 

  30. Grachev AF, Korchagin OA, Tselmovich VA, Kollmann HA (2008) Cosmic dust and micrometeorites in the transitional clay layer at the Cretaceous-Paleogene boundary in the gams section (Eastern Alps): morphology and chemical composition. Izv Phys Solid Earth 44:555–569. https://doi.org/10.1134/S1069351308070069

    Article  Google Scholar 

  31. Herzog GF, Xue S, Hall GS, Nyquist LE, Shih CY, Wiesmann H, Brownlee DE (1999) Isotopic and elemental composition of iron, nickel, and chromium in type I deep-sea spherules: implications for origin and composition of the parent micrometeoroids. Geochim Cosmochim Acta 63:1443–1457. https://doi.org/10.1016/S0016-7037(99)00011-3

    Article  Google Scholar 

  32. Hesse R, Schacht U (2011) Early diagenesis of deep-sea sediments

  33. Iwahashi J (1991) Shape and surface structure of the magnetic micro-spherules from Permian and Triassic bedded chert. J Geosci - Osaka City Univ

  34. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812. https://doi.org/10.1021/am1004943

    Article  Google Scholar 

  35. Kadyrov R (2014) Lithogenetic features of Syukeevskoye gypsum field, Republic of Tatarstan. Kazan Federal University

  36. Kataoka ML, Hochman MG, Rodriguez EK, et al (2010) A review of factors that affect artifact from metallic hardware on multi-row detector computed tomography. Curr probl diagn radiol 39:125–136. https://doi.org/10.1067/j.cpradiol.2009.05.002

  37. Katsura M, Sato J, Akahane M, et al (2018) Current and novel techniques for metal artifact reduction at CT: Practical guide for radiologists. Radiographics.https://doi.org/10.1148/rg.2018170102

  38. Keller G, Evans KR (2008) Impact stratigraphy: old principle, new reality. Spec Pap Soc Am 437:147

    Google Scholar 

  39. Keller G, D’Hondt SL, Orth CJ et al (1987) Late Eocene impact microspherules: stratigraphy, age and geochemistry. Meteoritics. https://doi.org/10.1111/j.1945-5100.1987.tb00883.x

  40. Korchagin O (2013) Fossil micrometeorites, microtektites and microkristites: method of investigations, classification and impact-stratigraphy scale. In: Stratigrafiya v nachale XXI veka—tendentsii i novye idei. Ocherki po regional’noi geologii Rossii. pp 112–142

  41. Kosakevitch A, Disnar JR (1997) Nature and origin of chemical zoning in the metal nucleus and oxide cortex of cosmic spherules from the Tuamotu Archipelago, French Polynesia. Geochim Cosmochim Acta 61:1073–1082. https://doi.org/10.1016/S0016-7037(96)00380-8

    Article  Google Scholar 

  42. Kyte FT, Shukolyukov A, Lugmair GW, Lowe DR, Byerly GR (2003) Early Archean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology. 31:283. https://doi.org/10.1130/0091-7613(2003)031<0283:EASBCI>2.0.CO;2

    Article  Google Scholar 

  43. Laevastu T, Mellis O (1955) Extraterrestrial material in deep-sea deposits. Trans Am Geophys Union 36:385. https://doi.org/10.1029/TR036i003p00385

    Article  Google Scholar 

  44. Lafuente B, Downs RT, Yang H, Stone N (2015) RRUFF™ Project. In: power databases RRUFF Proj. Highlights mineral. Crystallogr. T Armbruster R M Danisi, eds

  45. Langway CC (1970) Stratigraphic analysis of a deep ice core from Greenland. Geological Society of America

  46. Larsen J (2017) In search of stardust: amazing micrometeorites and their terrestrial imposters. Voyageur Press (MN)

  47. Leeder MR (1982) Sedimentology. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  48. Lefèvre R, Gaudichet A, Billon-Galland MA (1986) Silicate microspherules intercepted in the plume of Etna volcano. Nature. 322:817–820. https://doi.org/10.1038/322817a0

    Article  Google Scholar 

  49. Love SG, Brownlee DE (1991) Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus. 89:26–43. https://doi.org/10.1016/0019-1035(91)90085-8

    Article  Google Scholar 

  50. Low DR, Byerly GR (1986) Early Archean silicate spherules of probable impact origin, South Africa and Western Australia Geology. https://doi.org/10.1130/0091-7613(1986)14<83:EASSOP>2.0.CO

  51. Mac Low M-M, Zahnle K (1994) Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere. Astrophys J 434:L33–L36. https://doi.org/10.1086/187565

    Article  Google Scholar 

  52. Maurette M, Olinger C, Michel-Levy MC, Kurat G, Pourchet M, Brandstätter F, Bourot-Denise M (1991) A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature. 351:44–47. https://doi.org/10.1038/351044a0

    Article  Google Scholar 

  53. Medvedev RV, Gorbatsevich FI, Zotkin IT (1985) Determination of the physical properties of stony meteorites applied to the study of their destruction processes. Meteoritika 44:105–110

    Google Scholar 

  54. Meeker GP, Hinkley TK (1993) The structure and composition of microspheres from the Kilauea volcano, Hawaii. Am Mineral

  55. Muftakhetdinova RF, Grokhovsky VI, Yakovlev GA (2018) Analysis of structural changes and phase transformations in Sikhote–Alin IIAB iron meteorite under various origin shock deformation. Lett Mater. https://doi.org/10.22226/2410-3535-2018-1-54-58

  56. Murray I (1876) On the distribution of volcanic debris over the floor of ocean. Proc R Soc 9:247–261

    Google Scholar 

  57. Murray J, Renard AF (1891) Mineral substances of terrestrial and extraterrestrial origin in deep-sea deposits. Chapter 5:1873–1876

    Google Scholar 

  58. Mutch TA (1964) Extraterrestrial particles in Paleozoic salts. Ann N Y Acad Sci 119:166–185. https://doi.org/10.1111/j.1749-6632.1965.tb47432.x

    Article  Google Scholar 

  59. Mutch TA (1966) Abundances of magnetic spherules in Silurian and Permian salt samples. Earth Planet Sci Lett 1:325–329. https://doi.org/10.1016/0012-821X(66)90016-1

    Article  Google Scholar 

  60. Nickel EH (1959) The occurrence of native nickel-iron in the serpentine rock of the Eastern Townships of Quebec Province. Can Mineral

  61. Noguchi T, Ohashi N, Tsujimoto S, Mitsunari T, Bradley JP, Nakamura T, Toh S, Stephan T, Iwata N, Imae N (2015) Cometary dust in Antarctic ice and snow: past and present chondritic porous micrometeorites preserved on the Earth’s surface. Earth Planet Sci Lett 410:1–11. https://doi.org/10.1016/j.epsl.2014.11.012

    Article  Google Scholar 

  62. Nordenskjold NA (1874) On the cosmic dust which falls on the surface of the Earth with the atmospheric precipitation. Philos Mag 48:546–562

    Article  Google Scholar 

  63. Onoue T, Nakamura T, Haranosono T, Yasuda C (2011) Composition and accretion rate of fossil micrometeorites recovered in middle Triassic deep-sea deposits. Geology. 39:567–570. https://doi.org/10.1130/G31866.1

    Article  Google Scholar 

  64. Parkin DW, Sullivan RAL, Andrews JN (1980) Further studies on cosmic spherules from deep-sea sediments. Philos Trans R Soc A Math Phys Eng Sci 297:495–518. https://doi.org/10.1098/rsta.1980.0227

    Article  Google Scholar 

  65. Pechersky DM, Kuzina DM, Markov GP, Tsel’movich VA (2017) Native iron in the Earth and space. Izv Phys Solid Earth 53:658–676. https://doi.org/10.1134/S1069351317030089

    Article  Google Scholar 

  66. Propp MV, Propp LN (2001) Iron in oxidative and reduction processes in Marine Sands. Russ J Mar Biol 27:251–255. https://doi.org/10.1023/A:1011919520819

    Article  Google Scholar 

  67. Rossetti P, Zucchetti S (1988) Occurrence of native iron, Fe-Co and Ni-Fe alloys in the serpentinite from the Balangero asbestos mine (Western Italian Alps). Ofioliti

  68. Rubin AE, Breen JP, Wasson JT, Pitt D (2015) Shock effects in the Willamette ungrouped iron meteorite. Meteorit Planet Sci 50:1984–1994. https://doi.org/10.1111/maps.12569

    Article  Google Scholar 

  69. Schumacher MM (1979) Seawater corrosion handbook. Noyes Data Corp

  70. Shi GH, Zhu XK, Deng J, Mao Q, Liu YX, Li GW (2011) Spherules with pure iron cores from Myanmar jadeitite: type-I deep-sea spherules? Geochim Cosmochim Acta 75:1608–1620. https://doi.org/10.1016/j.gca.2011.01.005

    Article  Google Scholar 

  71. Soliman M (2003) Dakhla Shale ( Beida Shale Member) at G. Duwi, Red Sea Coast, Egypt: Mineralogical and Sedimentological Aspects. Third Int Conf Geol Africa 2:283–305

    Google Scholar 

  72. Sonnenfeld P (1984) Brines and evaporites. Academic Press Inc (Dec. 1984)

  73. Sungatullin RK, Kuleshov VN, Kadyrov RI (2014) Isotope (δ13C and δ18O) compositions of dolomites from the Permian evaporitic sequences of the Eastern Russian Plate: evidence from the Syukeevo gypsum deposit. Lithol Miner Resour 49:406–415. https://doi.org/10.1134/s0024490214050071

    Article  Google Scholar 

  74. Sungatullin RK, Sungatullina GM, Gluchov MS, et al (2015) The possibility of using space correlation with microspheres petroleum deposits. Neft khozyaystvo - Oil Ind

  75. Suttle MD, Genge MJ (2017) Diagenetically altered fossil micrometeorites suggest cosmic dust is common the geological record. Earth Planet Sci Lett 476:132–142. https://doi.org/10.1016/j.epsl.2017.07.052

    Article  Google Scholar 

  76. Suttle MD, Genge MJ, Salge T, Lee MR, Folco L, Góral T, Russell SS, Lindgren P (2019) A microchondrule-bearing micrometeorite and comparison with microchondrules in CM chondrites. Meteorit Planet Sci 54:1303–1324. https://doi.org/10.1111/maps.13279

    Article  Google Scholar 

  77. Svetsov VV (1998) Could the Tunguska debris survive the terminal flare? Planet Space Sci 46:261–268. https://doi.org/10.1016/s0032-0633(96)00162-6

    Article  Google Scholar 

  78. Svetsov VV, Nemtchinov IV, Teterev AV (1995) Disintegration of large meteoroids in Earth’s atmosphere: theoretical models. Icarus. https://doi.org/10.1006/icar.1995.1116

  79. Syvitski JPM (ed) (1991) Principles, methods, and application of particle size analysis. Cambridge University Press, Cambridge

    Google Scholar 

  80. Taylor S, Brownlee DE (1991) Cosmic spherules in the geologic record. Meteoritics. 26:203–211. https://doi.org/10.1111/j.1945-5100.1991.tb01040.x

    Article  Google Scholar 

  81. Tomkins AG, Bowlt L, Genge M, Wilson SA, Brand HEA, Wykes JL (2016) Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature. 533:235–238. https://doi.org/10.1038/nature17678

    Article  Google Scholar 

  82. Toppani A, Libourel G, Engrand C, Maurette M (2001) Experimental simulation of atmospheric entry of micrometeorites. Meteorit Planet Sci 36:1377–1396. https://doi.org/10.1111/j.1945-5100.2001.tb01831.x

    Article  Google Scholar 

  83. van Ginneken M, Gattacceca J, Rochette P, Sonzogni C, Alexandre A, Vidal V, Genge MJ (2017) The parent body controls on cosmic spherule texture: evidence from the oxygen isotopic compositions of large micrometeorites. Geochim Cosmochim Acta 212:196–210. https://doi.org/10.1016/j.gca.2017.05.008

    Article  Google Scholar 

  84. Voldman GG, Genge MJ, Albanesi GL, Barnes CR, Ortega G (2013) Cosmic spherules from the Ordovician of Argentina. Geol J 48:222–235. https://doi.org/10.1002/gj.2418

    Article  Google Scholar 

  85. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons

  86. Wohletz KH, McQueen RG (1984) Volcanic and stratospheric dustlike particles produced by experimental water-melt interactions. Geology. 12:591. https://doi.org/10.1130/0091-7613(1984)12<591:VASDPP>2.0.CO;2

    Article  Google Scholar 

  87. Zhang H, Shen S, Cao C, Zheng Q (2014) Origins of microspherules from the Permian-Triassic boundary event layers in South China. Lithos. 204:246–257. https://doi.org/10.1016/j.lithos.2014.02.018

    Article  Google Scholar 

  88. Zheng W, Hu X, Tannant DD, Zhang K, Xu C (2019) Characterization of two- and three-dimensional morphological properties of fragmented sand grains. Eng Geol 263:105358. https://doi.org/10.1016/j.enggeo.2019.105358

Download references

Acknowledgments

The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. Part of microscopy investigation was performed in Interdisciplinary Center for Analytical Microscopy of Kazan Federal University. We are grateful to M. D. Suttle and D. M. Kuzina for constructive critique and very helpful comments.

Funding

Part of microscopy investigation was funded by the Russian Scientific Foundation, project No. 18-17-00251.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rail Kadyrov.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadyrov, R., Glukhov, M., Statsenko, E. et al. Enigma of ferruginous inclusions in Permian evaporites. Arab J Geosci 13, 1058 (2020). https://doi.org/10.1007/s12517-020-05995-3

Download citation

Keywords

  • I-type ablation spherules
  • Meteorite iron
  • Ferruginous microparticles
  • Permian evaporites
  • Kamsko-Ustyinskoe gypsum field