Skip to main content
Log in

Soil respiration in larch and pine ecosystems of the Krasnoyarsk region (Russian Federation): a latitudinal comparative study

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Based on the long-term (12 years) data on soil respiration (SR) measurements in representative conifer forests of the Krasnoyarsk region (Central Siberia), we demonstrated specific characteristics of SR. The study sites located closely to Arctic Circle were related to different latitudes, including 56° N (SAE site, Krasnoyarsk), 60° N (ZOTTO site, Zotino), and 64° N (Tura site, Evenkia). Study sites were selected in forest ecosystems (> 41 years old) and represented a wide range of the climate, stand, permafrost availability, and soil types. However, the mean seasonal values of SR (mean ± SD) varied in a relatively narrow range from 2.11 ± 0.69 in the forest-steppe zone (SAE) to 2.82 ± 1.77 μmol CO2 m−2 s−1 in northern larch taiga (Tura). Nevertheless, a twofold difference in the duration of growing season among northern and southern locations results in a variation of total seasonal CO2 emissions (mean ± SD) from 216 ± 136 g C m−2 in larch stands of northern taiga to 369 ± 115 g C m−2 in larch stands of southern forest-steppe zone. Evaluation of the multiannual dynamics of SR over the past 1.5 decades (1995–2010) showed the escalation of SR in the permafrost larch stands (Tura) in 2005–2010. That has been coupled with the enhanced activity of the soil heterotrophic microbiota in 2007–2010. Our study highlights the importance of further monitoring of SR in permafrost Siberian ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abaimov AP, Zyryanova OA, Prokushkin SG, Koike T, Matsuura V (2000) Forest ecosystems of the cryolithic zone of Siberia; regional features, mechanisms of stability and pyrogenic changes. Eurasian J For Res 1:1–10

    Google Scholar 

  • Abaimov AP, Prokushkin SG, Sukhovol’skii VG, Ovchinnikova TM (2004) Evaluation and prediction of postfire condition of Gmelin larch on permafrost soils in Middle Siberia. Lesovedenie 2:3–11 (In Russian)

    Google Scholar 

  • Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob Chang Biol 21:4570–4587

    Google Scholar 

  • Bhupinderpal-Singh NA, Lofvenius MO, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296

    Google Scholar 

  • Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC, Forbes BC, Georges D, Goetz SJ, Guay KC, Henry GHR, HilleRisLambers J, Hollister RD, Karger DN, Kattge J, Manning P, Prevéy JS, Rixen C, Schaepman-Strub G, Thomas HJD, Vellend M, Wilmking M, Wipf S, Carbognani M, Hermanutz L, Lévesque E, Molau U, Petraglia A, Soudzilovskaia NA, Spasojevic MJ, Tomaselli M, Vowles T, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Beest M, Berner L, Björk RG, Buchwal A, Buras A, Christie K, Cooper EJ, Dullinger S, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Harper KA, Heijmans MMPD, Hudson J, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Johnstone JF, Jørgensen RH, Kaarlejärvi E, Klady R, Kuleza S, Kulonen A, Lamarque LJ, Lantz T, Little CJ, Speed JDM, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Rumpf SB, Semenchuk P, Shetti R, Collier LS, Street LE, Suding KN, Tape KD, Trant A, Treier UA, Tremblay JP, Tremblay M, Venn S, Weijers S, Zamin T, Boulanger-Lapointe N, Gould WA, Hik DS, Hofgaard A, Jónsdóttir IS, Jorgenson J, Klein J, Magnusson B, Tweedie C, Wookey PA, Bahn M, Blonder B, van Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS III, Cornwell WK, Craine J, Dainese M, de Vries FT, Díaz S, Enquist BJ, Green W, Milla R, Niinemets Ü, Onoda Y, Ordoñez JC, Ozinga WA, Penuelas J, Poorter H, Poschlod P, Reich PB, Sandel B, Schamp B, Sheremetev S, Weiher E (2018) Plant functional trait change across a warming tundra biome. Nature 562:57–62. https://doi.org/10.1038/s41586-018-0563-7

    Article  Google Scholar 

  • Boden TA, Marland G, Andres RJ (2009) Global, regional and national fossil-fuel CO2 emissions, TN: Carbon Dioxide Information Analysis Center, ORNL, Oak Ridge. http://cdiac.ornl.gov/trends/emis/overview 2006.html

  • Bond-Lambert B, Thompson A (2010a) A global database of soil respiration data. Biogeosciences 7:1915–1926

    Google Scholar 

  • Bond-Lambert B, Thompson A (2010b) Temperature-associated increases in the global soil respiration record. Nature 464:582–597

    Google Scholar 

  • Bond-Lambert B, Bailey VL, Chen M, Gough CM, Vargas R (2018) Globally rising soil heterotrophic respiration over recent decades. Nature 560:80–83

    Google Scholar 

  • Boy M, Thomson ES, Acosta Navarro J-C, Arnalds O, Batchvarova E, Bäck J, Berninger F, Bilde M, Brasseur Z, Dagsson-Waldhauserova P, Castarède D, Dalirian M, de Leeuw G, Dragosics M, Duplissy E-M, Duplissy J, Ekman AML, Fang K, Gallet J-C, Glasius M, Gryning S-E, Grythe H, Hansson H-C, Hansson M, Isaksson E, Iversen T, Jonsdottir I, Kasurinen V, Kirkevåg A, Korhola A, Krejci R, Kristjansson JE, Lappalainen HK, Lauri A, Leppäranta M, Lihavainen H, Makkonen R, Massling A, Meinander O, Nilsson ED, Olafsson H, Pettersson JBC, Prisle NL, Riipinen I, Roldin P, Ruppel M, Salter M, Sand M, Seland Ø, Seppä H, Skov H, Soares J, Stohl A, Ström J, Svensson J, Swietlicki E, Tabakova K, Thorsteinsson T, Virkkula A, Weyhenmeyer GA, Wu Y, Zieger P, Kulmala M (2019) Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmos Chem Phys 19:2015–2061. https://doi.org/10.5194/acp-19-2015-2019

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y (2009) Influence of environmental variability on root dynamics in northern forests. Crit Rev Plant Sci 28:179–197

    Google Scholar 

  • Casper JK (ed) (2010) Greenhouse gases: worldwide impacts. Facts on file, an imprint of InfoBase Publishing, New York

    Google Scholar 

  • Chen H, Tian HQ (2005) Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale. J Integr Plant Biol 47:1288–1302

    Google Scholar 

  • Chernoff H (1973) The use of faces to represent statistical association. JASA 68:361–368

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, De Fries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P, Carbon and Other Biogeochemical Cycles (2013) Climate Change 2013: The Physical Science Basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon Pools and Flux of Global Forest Ecosystems. Science 263:185–190

    Google Scholar 

  • Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Chang Biol 11:167–181

    Google Scholar 

  • Gao D, Peng B, Fan Z, Pei G, Bai E (2018) Different winter soil respiration between two mid-temperate plantation forests. For Ecol Manag 409:390–398. https://doi.org/10.1016/j.foreco.2017.11.029

    Article  Google Scholar 

  • Gardenas AI (2000) Soil respiration fluxes measured along a hydrological gradient in a Norway spruce stand in south Sweden (Skogaby). Plant Soil 221:273–280

    Google Scholar 

  • Gaüzère P, Iversen LL, Barnagaud J-Y, Svenning J-C, Blonder B (2018) Empirical Predictability of Community Responses to Climate Change. Front Ecol Evol 6:186. https://doi.org/10.3389/fevo.2018.00186

    Article  Google Scholar 

  • Gentsch N, Wild B, Mikutta R, Čapek P, Diáková K, Schrumpf M, Turner S, Minnich C, Schaarschmidt F, Shibistova O, Schnecker J, Urich T, Gittel A, Šantrůčková H, Bárta J, Lashchinskiy N, Fuß R, Richter A, Guggenberger G (2018) Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob Chang Biol 24:3401–3415

    Google Scholar 

  • Glagolev MV, Ilyasov DV, Terentieva IE, Sabrekov AF, Mochenov SY, Maksutov SS (2018) Methane and carbon dioxide fluxes in the waterlogged forests of south and middle taiga of Western Siberia. IOP Conf Series: Earth and Environmental Science 138:012005. https://doi.org/10.1088/1755-1315/138/1/012005

    Article  Google Scholar 

  • Gordon AM, Schlentner RE, Van Cleve K (1987) Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska. Can J For Res 17:304–310

    Google Scholar 

  • Grogan P, Chapin FS III (1999) Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems 2:451–459

    Google Scholar 

  • Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015) Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12:4121–4132. https://doi.org/10.5194/bg-12-4121-2015

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lövenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Google Scholar 

  • IPCC: Climate Change 2014: (2014) Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva

  • Ito A, Reyer CPO, Gädeke A, Ciais P, Chang J, Chen M, François L, Forrest M, Hickler T, Ostberg S, Shi H, Thiery W, Tian H (2020) Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environ Res Lett 15:044006

    Google Scholar 

  • IUSS Working Group WRB. (2015) World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106 FAO, Rome

  • Jansson JK, Tas N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425

    Google Scholar 

  • Jian J, Steele MK, Day SD, Thomas RQ (2018) Future global soil respiration rates will swell despite regional decreases in temperature sensitivity caused by rising temperature. Earth’s Future 6:1539–1554. https://doi.org/10.1029/2018EF000937

    Article  Google Scholar 

  • Jiang J, Shi F, Li B, Luo Y, Chen J, Chen J (2005) Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China. Tree Physiol 25:1187–1195

    Google Scholar 

  • Jong DE, Schappert HJV, MacDonald KB (1974) Carbon dioxide evolution from virgin and cultivated soil as affected by management practices and climate. Can J Soil Sci 54:299–307

    Google Scholar 

  • Kajimoto T (2010) Root system development of larch trees growing on Siberian permafrost. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems: Siberian Larch Forests. Ecological Studies, Vol. 209, Springer Scicnce+Business Media B.V., pp 99–122

  • Kattenberg A, Giorgi F, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models-projections of future climate. In: Houghton JT, Meiro Filho LG, Callender BA, Henris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. 2nd assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 285–357

  • Kim Y, Kim S-D, Enomoto H, Kushida K, Kondo M, Uchida M (2012) Latitudinal distribution of soil CO2 efflux and temperature along the Dalton Highway, Alaska. Polar Science. https://doi.org/10.1016/j.polar.2012.11.002

  • Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P (2006) Forest floor vegetation plays an important role in photosynthetic production of boreal forests. For Ecol Manag 221:241–248

    Google Scholar 

  • Komulainen V-M, Tuittila E-S, Vasander H, Laine J (1999) Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. J Appl Ecol 36:634–648

    Google Scholar 

  • Köster E, Köster K, Berninger F, Prokushkin A, Aaltonen H, Zhou X, Pumpanen J (2018) Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J Environ Manag 228:405–415. https://doi.org/10.1016/j.jenvman.2018.09.051

    Article  Google Scholar 

  • Kudeyarov VN, Kurganova IN (2005) Respiration of Russian soils: database analysis, long-term monitoring, and general estimates. Eurasian Soil Sci 38:983–992

    Google Scholar 

  • Kumpu A, Mäkelä A, Pumpanen J, Saarinen J, Berninger F (2018) Soil CO2 efflux in uneven-aged and even-aged Norway spruce stands in southern Finland. iForest 11:705–712. https://doi.org/10.3832/ifor2658-011

    Article  Google Scholar 

  • Kuzmichev VV, Pshenichnikova LS, Tretyakova VA (2005) Productivity of six tree species plantations for three decades in the Siberian afforestation experiment. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Netherlands, pp 269–279

    Google Scholar 

  • Laganière J, Paré D, Bergeron Y, Chen HYH (2012) The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biol Biochem 53:18–27. https://doi.org/10.1016/j.soilbio.2012.04.024

    Article  Google Scholar 

  • Luo Y, Zhou X (2006) Soil respiration and the environment. Elsevier, Burlington

    Google Scholar 

  • Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347–359

    Google Scholar 

  • Makhnykina AV, Prokushkin AS, Vaganov EA, Verkhovets SV, Rubtsov AV (2016) Dynamics of the CO2 fluxes from the soil surface in pine forests in Central Siberia. J Siberian Federal Univ Biol 3(9):338–357

    Google Scholar 

  • Makhnykina AV, Prokushkin AS, Menyailo OV, Verkhovets SV, Tychkov II, Urban AV, Rubtsov AV, Koshurnikova NN, Vaganov EA (2020) The impact of climatic factors on CО2 emissions from soils of Middle-Taiga forests in Central Siberia: emission as a function of soil temperature and moisture. Russ J Ecol 51:46–56. https://doi.org/10.1134/s1067413620010063

    Article  Google Scholar 

  • Maljanen M, Hytönen J, Martikainen PJ (2001) Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils. Plant Soil 231:113–121

    Google Scholar 

  • Masyagina OV, Prokushkin AS, Prokushkin SG (2009) Long-term soil respiration observations in burnt area (of 1994) and in adjacent larch stand in central Evenkia (Russia). In: C/H2O/Energy balance and climate over boreal regions with special emphasis on eastern Eurasia: Proceedings of 4th International WS. Yakutsk, Russia, Nagoya, pp 99–100

  • Masyagina OV, Evgrafova SY, Titov SV, Prokushkin AS (2015) Dynamics of soil respiration at different stages of pyrogenic restoration succession with different-aged burns in Evenkia as an example. Russ J Ecol 46(1):27–35

    Google Scholar 

  • Masyagina OV, Evgrafova SY, Bugaenko TN, Kholodilova VV, Krivobokov LV, Korets MA, Wagner D (2019) Permafrost landslides promote soil CO2 emission and hinder C accumulation. Sci Total Environ 657:351–364. https://doi.org/10.1016/j.scitotenv.2018.11.468

    Article  Google Scholar 

  • Matvienko AI, Makarov MI, Menyailo OV (2014) Biological sources of soil CO2 under Larix sibirica and Pinus sylvestris. Russ J Ecol 3:174–180

    Google Scholar 

  • Menyailo OV (2008) The effect of afforestation on mineralization of soil organic matter. Russ J Ecol 39(1):21–25

    Google Scholar 

  • Menyailo OV, Hungate BA (2005) Tree species effects on potential production and consumption of carbon dioxide, methane, and nitrous oxide: the Siberian afforestation experiment. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Netherlands, pp 293–305

    Google Scholar 

  • Menyailo OV, Hungate BA, Zech W (2002) Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment. Plant Soil 242:171–182

    Google Scholar 

  • Millar R, Fuglestvedt J, Friedlingstein P et al (2017) Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat Geosci 10:741–747. https://doi.org/10.1038/ngeo3031

    Article  Google Scholar 

  • Morishita T, Masyagina OV, Koike T, Matsuura Y (2010) Soil respiration in larch forests. In: Osawa A, Zyryanova O.A, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems: Siberian Larch Forests. Ecological Studies. Vol. 209, Springer Scicnce+Business Media B.V., pp 165–182

  • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293. https://doi.org/10.1111/j.1469-8137.2004.01047.x

    Article  Google Scholar 

  • O’Neill KP, Kasischke ES, Richter DD (2003) Seasonal and decadal patterns of soil carbon uptake and emission along an age sequence of burned black spruce stands in interior Alaska. J Geophys Res–Atmos 108

  • Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (2010) Permafrost ecosystems: Siberian larch forests. Ecol Stud 209. https://doi.org/10.1007/978-1-4020-9693-8_1

  • Parazoo NC, Koven CD, Lawrence DM, Romanovsky V, Miller CE (2018) Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions. Cryosphere 12:123–144. https://doi.org/10.5194/tc-12-123-2018

    Article  Google Scholar 

  • Pleshikov FI (ed) (2002) Forest ecosystems of the Yenisei River meridian. Nauka SB RAS, Novosibirsk (in Russian)

    Google Scholar 

  • Prokushkin AS, Tokareva IV, Prokushkin SG, Abaimov AP, Guggenberger H (2008) Fluxes of dissolved organic matter in larch forests in the cryolithozone of central Siberia. Russ J Ecol 39:151–159

    Google Scholar 

  • Prokushkin AS, Hagedorn F, Pokrovsky OS, Viers J, Kirdyanov AV, Masyagina OV, Prokushkina MP, McDowell WH (2018) Permafrost regime affects the nutritional status and productivity of larches in Central Siberia. Forests 9:1–18

    Google Scholar 

  • Qu LY, Kitaoka S, Koike T (2018) Factors controlling soil microbial respiration during the growing season in a mature larch plantation in Northern Japan. J Soils Sediments 18:661–668. https://doi.org/10.1007/s11368-017-1799-9

    Article  Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36

    Google Scholar 

  • Santruckova H, Bird M, Kalaschnikov YN, Grund M, Elhottova D, Simek M, Grigoriev SA, Gleixner G, Arneth A, Schulze D, Lloyd J (2003) Microbial characteristics of soils on a latitudinal transect in Siberia. Glob Chang Biol 9(7):1106–1117. https://doi.org/10.1046/j.1365-2486.2003.00596.x

    Article  Google Scholar 

  • Sawamoto T, Hatano R, Yajima T, Takahashi K, Isaev AP (2000) Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci Plant Nutr 46:31–42

    Google Scholar 

  • Schulze E-D, Lloyd J, Kelliher FM et al (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – a synthesis. Glob Chang Biol 5:703–722

    Google Scholar 

  • Schulze E-D, Wirth C, Mollicone D, von Lüpke N, Ziegler W, Achard F, Mund M, Prokushkin A, Scherbina S (2012) Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers. Biogeosciences 9:1405–1421. https://doi.org/10.5194/bg-9-1405-2012

    Article  Google Scholar 

  • Shugalei LS (2005) The Siberian afforestation experiment: history, methodology, and problems. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Netherlands, pp 257–268

    Google Scholar 

  • Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256

    Google Scholar 

  • Tang X, Fan S, Du M, Zhang W, Gao S, Liu S, Chen G, Yu Z, Yang W (2020) Spatial and temporal patterns of global soil heterotrophic respiration in terrestrial ecosystems. Earth Syst Sci Data 12:1037–1051. https://doi.org/10.5194/essd-12-1037-2020

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. https://doi.org/10.1029/2008gb003327

    Article  Google Scholar 

  • Trefilova OV, Vedrova EF, Oskorbin PA (2009) The stock and structure of large woody debris in the pine forests of the Yenisei plain. Lesovedenie 4:16–23 (in Russian)

    Google Scholar 

  • Tremblay SL, D’Orangeville L, Lambert M-C, Houle D (2018) Transplanting boreal soils to a warmer region increases soil heterotrophic respiration as well as its temperature sensitivity. Soil Biol Biochem 116:203–212. https://doi.org/10.1016/j.soilbio.2017.10.018

    Article  Google Scholar 

  • Vedrova EF (2005) Biochemistry of carbon and nitrogen in the Siberian afforestation experiment. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Netherlands, pp 281–292

    Google Scholar 

  • Wang WJ, Zu YG, Wang H, Hirano T, Sasa K, Koike T (2005) Effects of collar inserting and parameters selection on the soil respiration measurement by LI-6400 in a larch forest. J Forest Res 10:57–60

    Google Scholar 

  • Wang Q, He N, Xu L, Zhou X (2018) Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agric For Meteorol 262:81–88. https://doi.org/10.1016/j.agrformet.2018.07.007

    Article  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd Revise edn. MacMillan Publishing Co, New York

    Google Scholar 

  • Widén B (2002) Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest. Agric For Meteorol 111:283–297

    Google Scholar 

  • Yanagihara Y, Koike T, Matsuura Y, Mori S, Shibata H, Satoh F, Masuyagina OV, Zyryanova OA, Prokushkin AS, Prokushkin SG, Abaimov AP (2000) Soil respiration rate on the contrasting north- and south-facing slopes of a larch forest in central Siberia. Eurasian J For Res 1:19–29

    Google Scholar 

  • Yvan-Durocher G, Caffrey JM, Cescatti A, Dossena M, del Giorgio P, Gasol JM, Montoya JM, Pumpane J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012) Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487:472–476. https://doi.org/10.1038/nature11205

    Article  Google Scholar 

  • Zhao Z, Peng C, Yang Q, Meng F-R, Song X, Chen S, Epule TE, Li P, Zhu Q (2017) Model prediction of biome-specific global soil respiration from 1960 to 2012. Earth’s Future 5:715–729. https://doi.org/10.1002/2016EF000480

    Article  Google Scholar 

  • Zhou T, Phi P, Hui D, Luo Y (2009) Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. J Geophys Res Biogeosci 114:G02016

    Google Scholar 

  • Zobitz JM, Moore DJP, Sacks WJ, Monson RK, Bowling DR, Schimel DS (2008) Integration of process-based soil respiration models with whole-ecosystem CO2 measurements. Ecosystems 11:250–269. https://doi.org/10.1007/s10021-007-9120-1

    Article  Google Scholar 

Download references

Acknowledgments

The research was performed using the subject of a basic project No. 0356-2019-0009. We thank all anonymous reviewers for the constructive comments that have substantially improved this manuscript.

Funding

The research was funded by the Russian Foundation of Basic Research (projects No. 19-29-05122, 18-41-242003, 18-34-00736, 18-05-60203), RFBR-NSFC (project No. 19-54-53026), and Japan Society for the Promotion of Science “KAKENHI” (Grant Number 19H02987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana V. Masyagina.

Additional information

Responsible Editor: Haroun Chenchouni

Electronic supplementary material

ESM 1

(DOCX 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masyagina, O.V., Menyailo, O.V., Prokushkin, A.S. et al. Soil respiration in larch and pine ecosystems of the Krasnoyarsk region (Russian Federation): a latitudinal comparative study. Arab J Geosci 13, 954 (2020). https://doi.org/10.1007/s12517-020-05939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05939-x

Keywords

Navigation