Skip to main content

Advertisement

Log in

Re-examination of Itakpe iron ore deposit for reserve estimation using geostatistics and artificial neural network techniques

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This paper re-examines the Itakpe iron ore deposit using geostatistics and artificial neural network techniques. Set of exploration information on the deposit are used to develop ordinary kriging (OK) model that produced a minimal error. The sensitivity analysis is used to choose a multilayer perceptron (MLP) network model as the optimum network for the ANN. The OK model showed a better performance for grade estimation when compared with the MLP model. Thus, using OK, a total resource of about 12% lower than that of the conventional method, which is currently in use in Itakpe, is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akeju VO, Afeni TB (2015) Investigation of the spatial variability in Oyo-Iwa limestone deposit for quality control. J Eng Sci Technol 10(8):1065–1085

    Google Scholar 

  • Al-Alawi SM, Tawo EE (1999) A comparison between artificial neural network and a geostatistical technique in the estimation of regionalized variables. Eng J Univ Qatar 12:125–149

    Google Scholar 

  • Asghari O, Hezarkhani A (2006) Geostatistical modeling and reserve estimation of Choghart iron ore deposit through ordinary kriging method. In Proceedings of the 5th International Scientific Conference – SGEM pp. 631-642

  • Asghari O, Fatemeh S, Hassan BA (2009) The comparison between sequential Gaussian simulation (SGS) of choghart ore deposit and geostatistical estimation through ordinary kriging. Aust J Basic Appl Sci 3(1):330–341

    Google Scholar 

  • Badel M, Angorani S, Panah MS (2011) The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Comput Geosci 37(4):530–540

    Article  Google Scholar 

  • Beale MH, Hagan MT, Demuth HB (2012) Neural network toolbox user’s guide. The MathsWorks Inc., Natick

    Google Scholar 

  • Blackwell GH, Sinclair AJ (2004) Applied mineral inventory estimation. Cambridge University Press, UK

    Google Scholar 

  • Bluman AG (2004) Elementary statistics: a step by step approach, 5th ed. McGraw Hill Publications, New York

    Google Scholar 

  • Chatterjee S, Bhattacherjee A, Samanta B, Pal SK (2006) Ore grade estimation of a limestone deposit in India using an artificial neural network. Applied GIS 2(1):3.1–03.20

    Article  Google Scholar 

  • Chilès JP, Delfiner P (2009) Geostatistics: modeling spatial uncertainty, John Wiley and Sons

  • Deutsch CV, Journel AG (1998) GSLIB Geostatistical Software Library and User’s Guide, 2nd Ed. Oxford University Press, New York

    Google Scholar 

  • Deutsch CV, Leuangthong O, Ortiz MJ (2007) Case for geometric criteria in resources and reserves classification. Soc Min Metall Explor 322:1–11

    Google Scholar 

  • Dominy SC, Noppe MA, Annels AE (2002) Errors and uncertainty in mineral resource and ore reserve estimation: the importance of getting it right. Explor Min Geol 11(1-4):77–98

    Article  Google Scholar 

  • Dutta S, Bandopadhyay S, Ganguli R, Misra D (2010) Machine learning algorithms and their application to ore reserve estimation of sparse and imprecise data. J Intell Learn Syst Appl 2:86–96

    Google Scholar 

  • Goh AT, Kulhawy FH (2003) Neural network approach to model the limit state surface for reliability analysis. Can Geotech J 40(6):1235–1244

    Article  Google Scholar 

  • Goswami AD, Mishra MK, Patra D (2017) Investigation of general regression neural network architecture for grade estimation of an Indian iron ore deposit. Arab J Geosci. https://doi.org/10.1007/s12517-017-2868-5

  • Haldar SK (2013) Mineral exploration: principles and applications, 1st ed., Elsevier Inc.

  • Icer S, Kara S, Guven A (2006) Comparison of multilayer perceptron training algorithms for portal venous Doppler signals in the cirrhosis disease. Expert Syst Appl 31(2):406–413

    Article  Google Scholar 

  • Idris MA, Saiang D, Nordlund E (2015) Stochastic assessment of pillar stability at Laisvall mine using artificial neural network. Tunn Under Space Technol 49:309–319

    Google Scholar 

  • Jafrasteh B, Fathianpour N (2017) A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomp 235:217–227

    Article  Google Scholar 

  • Jafrasteh B, Fathianpour N, Suarez A (2018) Comparison of machine learning methods for copper ore grade estimation. Comput Geosci 22:1371–1388

    Article  Google Scholar 

  • Jalloh A, Sasaki K, Jalloh Y Barrie AK (2016) The integration artificial neural networks and geostatistical 3D geological block modeling: a case study on a mineral sand deposit. Proceedings of the 24th International Mining Congress of Turkey, IMCET pp. 257-263

  • Kapageridis I, Denby B (1998) Neural network modelling of ore grade spatial variability. Proceedings of the International Conference for Artificial Neural Networks pp. 209-214

  • Krige DG (1996) A practical analysis of the effects of spatial structure and of data available and accessed, on conditional biases in ordinary kriging. 5th International Geostatistics Congress, Wollongong, Australia pp. 799-810

  • Lane KF (1988) The Economic definition of ore: cut-off grades in theory and practice. Mining Journal Books, London

    Google Scholar 

  • Lawal AI, Idris MA (2019) An artificial neural network-based mathematical model for the prediction of blast induced ground vibrations. Int J Environ Stud 77:318–334. https://doi.org/10.1080/00207233.2019.1662186

    Article  Google Scholar 

  • Marzeihe SK, Hassan M, Hossein H, Parvizz M (2013) Determining the best search neighbourhood in reserve estimation, using geostatistical method: a case study anomaly no. 12a iron deposit in central Iran. J Geol Soc India 81:581–585

    Article  Google Scholar 

  • Nezamolhosseini SA, Mojtahedzadeh SH, Gholamnejad J (2017) The application of artificial neural networks to ore reserve estimation at Choghart iron ore deposit. Anal Numer Methods Min Eng 6:73–83

    Google Scholar 

  • Olade MA (1978) General features of Precambrian iron ore deposit and its environment at Itakpe ridge, Okene Nigeria. Trans Inst Min Metal Sec B 87:81–89

    Google Scholar 

  • Sahin MA, Jaksa MB, Maier HR (2001) Artificial neural network applications in geotechnical engineering. Aust Geomech 36(1):49–62

    Google Scholar 

  • Samanta B, Bandopadhyay S (2009) Construction of a radial basis function network using an evolutionary algorithm for grade estimation in a placer gold deposit. Comput Geosci 35(8):1592–1602

    Article  Google Scholar 

  • Sarani F, Ahangar GA, Shabani A (2015) Predicting ESP and SAR by artificial neural network and regression models using soil pH and EC data (Miankangi Region, Sistan and Baluchestan Province, Iran). Arch Agron Soil Sci 62(1):150414060638008

    Google Scholar 

  • Sarkar BC (2014) Geostatistics: concepts and applications in mineral deposit modeling for exploration and mining. J Indian Geol Congr 6(1):3–26

    Google Scholar 

  • Sarkar BC, Gandhi SM (2016) Essential of mineral exploration and evaluation. Elsevier Inc.

  • Sarkar BC, Roy I (2005) A geostatistical approach to resource evaluation of kala iron ore deposit, Sundergarh dist., Orissa. J Geol Soc India 65(5):553–561

    Google Scholar 

  • Tadeusiewicz R (2015) Neural networks in mining sciences–general overview and some representative examples. Arch Min Sci 60(4):971–984

    Google Scholar 

  • Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Comput Geosci 42:18–27

    Article  Google Scholar 

  • Taylor HK (1994) Ore reserves, mining and profit. Can Inst Min Metall Bull 87(983):38-46

  • Vann J (2007) Applied geostatistics for geologist and engineers. Quantitative Group Publishers, Western Australia.

  • Vann J, Jackson S, Bertoli O (2003) Quantitative kriging neighbourhood analysis for the mining geologist – a description of the method with worked case examples. 5th International Mining Geology Conference, Bendigo pp. 215-223

  • Wackernagel H (1995) Multivariate geostatistics-an introduction with applications. Springer, Berlin

    Book  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists. 2nd ed. John Wiley and Sons, Ltd., England

    Book  Google Scholar 

  • Wellmer FW (1998) Statistical evaluations in exploration for mineral deposits. Springer-Verlag, Berlin Heidelberg Tokyo New York 379 pp

  • Weston J, Ratle F, Collobert R (2008) Deep learning via semi-supervised embedding. In proceedings of the 25th international conference on Machine learning, Helsinki, Finland pp. 1168-1175

  • William WG (2010) Application of neural networks for instant iron-ore grade estimation. Expert Syst Appl 37(12):8729–8735

    Article  Google Scholar 

  • Wu X, Zhou Y (1993) Reserve estimation using neural network techniques. Comput Geosci 19(4):567–575

    Article  Google Scholar 

  • Yama BR, Lineberry GT (1999) Artificial neural network application for a predictive task in mining. Min Eng 51(2):59–64

    Google Scholar 

  • Yunsel TY (2012) A practical application of geostatistical methods to quality and mineral reserve modelling of cement raw materials. J South Afr Inst Min Metall 112:239–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abiodun Ismail Lawal.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afeni, T.B., Lawal, A.I. & Adeyemi, R.A. Re-examination of Itakpe iron ore deposit for reserve estimation using geostatistics and artificial neural network techniques. Arab J Geosci 13, 657 (2020). https://doi.org/10.1007/s12517-020-05644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05644-9

Keywords

Navigation