Skip to main content

Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices

Abstract

In the present study, we analyzed spatio-temporal vegetation dynamics to identify and delineate the vegetation stress zones in tropical arid ecosystem of Anantapuramu district, Andhra Pradesh, India, using Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and Vegetation Anomaly Index (VAI) derived from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day products (MOD13Q1) at 250 m spatial resolution for the growing season (June to September) of 19 years during 2000 to 2018. The 1-month Standardized Precipitation Index (SPI) was computed for 30 years (1989 to 2018) to quantify the precipitation deficit/surplus regions and assess its influence on vegetation dynamics. The growing season mean NDVI and VCI were correlated with growing season mean 1-month SPI of dry (2003) and wet (2007) years to analyze the spatio-temporal vegetation dynamics. The correlation analysis between SPI and NDVI for dry year (2003) showed strong positive correlation (r = 0.89). Analysis of VAI for dry year (2003) indicates that the central, western, and south-western parts of the district reported high vegetation stress with VAI of less than − 2.0. This might be due to the fact that central and south-western parts of the district are more prone to droughts than the other parts of the district. The correlation analysis of SPI, NDVI, and VCI distinctly shows the impact of rainfall on vegetation dynamics. The study clearly demonstrates the robustness of NDVI, VCI, and VAI derived from time-series MODIS data in monitoring the spatio-temporal vegetation dynamics and delineate vegetation stress zones in tropical arid ecosystem of India.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  • Amri R, Zribi M, Duchemin B, Lili-Chabaane Z, Gruhier C, Chebouni A (2011) Analysis of vegetation behavior in a semi-arid region, using SPOT-VEGETATION NDVI data. Remote Sens. 3:2568–2590

    Google Scholar 

  • Cao Z, Li Y, Liu Y, Chen Y, Wang Y (2018) When and where did the Loess Plateau turn “green”? Analysis of the tendency and breakpoints of the normalized difference vegetation index. Land Degrad Dev 29:162–175

    Google Scholar 

  • Chang CT, Lin TC, Wang SF, Vadeboncoeur MA (2011) Assessing growing season beginning and end dates and their relation to climate in Taiwan using satellite data. Int J Remote Sens 32(18):5035–5058

    Google Scholar 

  • Chen J, Jonsson I, Tamura M, Gu Z, Matsushita B, Eklundh LA (2004) Simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91:332–344

    Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Nat Acad Sci 103:13740–13744

    Google Scholar 

  • Dancey C, Reidy J (2006) Estatística sem matemática para psicologia: usando SPSS para Windows. Porto Alegre, 608p.

  • De Keersmaecker W, Lhermitte S, Honnay O, Farifteh J, Somers B, Cop P (2014) How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob Chang Biol 20:2149–2161

    Google Scholar 

  • DES (2017) Directorate of economics & statistics, Agricultural statistics at glance, 2016–17, Govt. of Andhra Pradesh, India (https://www.ap.gov.in/wp-content/uploads/2018/03/Agriculture-Statistics-At-A-Glance-2016-17.pdf). Accessed 10 June, 2020.

  • Dodamani BM, Anoop R, Mahajan DR (2015) Agricultural drought modeling using remote sensing. Int J Environ Sci Dev 6(5):326–331

    Google Scholar 

  • Du L, Tian Q, Yu T, Meng Q, Jancso T, Udvardy P, Huang Y (2013) A comprehensive drought monitoring method integrating MODIS and TRMM data. Int J Appl Earth Obs Geoinf 23:245–253

    Google Scholar 

  • Dutta D, Kundu A, Patel NR, Saha SK, Siddiqui AR (2015) Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt J Remote Sens Space Sci 18(1):53–63

    Google Scholar 

  • ESRI (2001) Using ArcGIS geostatistical analyst. ESRI Press, Redlands, CA

    Google Scholar 

  • Figueiredo Filho DB, Silva Júnior JA (2009) Desvendando os Mistérios do Coeficiente de Correlação de Pearson (r). Revista Política Hoje 18(1):115–146

    Google Scholar 

  • Galarça SP, Lima CSM, Silveira G, Rufato AR (2010) Correlação de Pearson e análise de trilha identificando variáveis para caracterizar porta-enxerto de Pyrus communis L. Ciência e Agrotecnologia 34(4):860–869

    Google Scholar 

  • Gao T, Xu B, Yang XC, Jin YX, Ma HL, Li JY, Yu HD (2013) Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in Inner Mongolia’s grassland between 2001 and 2011. Int J Remote Sens 34(21):7796–7810

    Google Scholar 

  • Guay KC, Beck PS, Berner LT, Goetz SJ, Baccini A, Buermann W (2014) Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob. Chang. Biol. 20:3147–3158

    Google Scholar 

  • Gurgel HC, Ferreira NJ (2003) Annual and inter-annual variability of NDVI in Brazil and its connections with climate. Int J Remote Sens 24(18):3595–3609

    Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Wat Res Assoc 35(2):311–322

    Google Scholar 

  • Hazaymeh K, Hassan QK (2017) A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region. Jordan, J. Arid Land 9(3):319–330

    Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens 7:1417–1434

    Google Scholar 

  • Huber S, Fensholt R, Rasmussen K (2011) Water availability as the driver of vegetation dynamics in African Sahel from 1982 to 2007. Glob Planet Change 76(3–4):186–195

    Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213

    Google Scholar 

  • IPCC (2013) Climate change 2013. In: The physical science basis. Stocker TF et al (Eds). Cambridge University Press, 1535 pp.

  • Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens Environ 87(1):85–98

    Google Scholar 

  • Karavitis CA, Alexandris S, Tsesmelis DE, George A (2011) Application of the standardized precipitation index (SPI) in Greece. Water 3:787–805

  • Khosravi H, Haydari E, Shekoohizadegan S, Zareie S (2017) Assessment the effect of drought on vegetation in desert area using Landsat data. Egypt J Remote Sens Space Sci 20:S3–S12

    Google Scholar 

  • Kogan FN (1990) Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int J Remote Sens 11:1405–1419

  • Kogan FN (1995) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15:91–100

    Google Scholar 

  • Kogan FN (1997) Global drought watch from space. B Am Meteorol Soc 78(4):621–636

    Google Scholar 

  • Kogan FN (2001) Operational space technology for global vegetation assessment. Bull Am Meteorol Soc 82(9):1949–1964

    Google Scholar 

  • Kogan FN (2002) World droughts in the new millennium from AVHRR based vegetation health indices. EOS Trans Am Geophys Un 83(48):562–563

  • Kundu A, Denis DM, Patel NR (2015) Evaluation of the meteorological drought over the Bundelkhand region using geo-spatial techniques. Clim Change 1(4):418–424

    Google Scholar 

  • Kundu A, Patel NR, Denis DM, Dutta D (2020) An estimation of hydrometeorological drought stress over the central part of India using geo-information technology. J Indian Soc Remote Sens 48:1–9

    Google Scholar 

  • Li Z, Chen YN, Fang GH, Li YP (2017) Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports 7:1316

    Google Scholar 

  • Linés C, Werner M, Bastiaanssen W (2017) The predictability of reported drought events and impacts in the Ebro Basin using six different remote sensing data sets. Hydrol. Earth Syst. Sci. 21:4747–4765

    Google Scholar 

  • Logan K, Brunsell N, Jones A, Feddema J (2010) Assessing spatio-temporal variability of drought in the U.S. central plains. J Arid Environ 74:247–255

    Google Scholar 

  • Lotsch A, Friedl MA, Anderson BT, Tucker CJ (2003) Coupled vegetation–precipitation variability observed from satellite and climate records. Geophys Res Lett 30:125–132

    Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In Proceedings of the. In: 8th Conference on Applied Climatology, Anaheim, CA, USA, pp, pp 179–184

    Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. In: Proceedings, Ninth Conference on Applied Climatology. MA. Am Meteorol Soc, Boston, pp 233–236

    Google Scholar 

  • Measho S, Chen B, Trisurat Y, Pellikka P, Guo L, Arunyawat S, Tuankrua V, Ogbazghi W, Yemane T (2019) Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the semiarid region, Eritrea. Remote Sens 11(724):1–23

    Google Scholar 

  • Mishra AK, Singh VP (2011) Drought modeling—a review. J Hydrol 403:157–175

    Google Scholar 

  • MODIS (1999) MODIS Vegetation Index (MOD 13): Algorithm theoretical basis document, (http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf). Accessed 5 June 2020.

  • Mongkolsawat C, Thirangoon P, Suwanweramtorn R, Karladee N, Paiboonsank S, Champathet P (2001) An evaluation of drought risk area in Northeast Thailand using remotely sensed data and GIS. Asian J Geoinfor 1(4):1–4

    Google Scholar 

  • Moradi HR, Rajabi M, Faragzadeh M (2011) Investigation of meteorological drought characteristics in Fars Province, Iran. Catena 84(1–2):35–46

    Google Scholar 

  • Nagarajan R (2003) Drought: assessment, monitoring, management and resource conservation. Capital Publishing Company, New Delhi

    Google Scholar 

  • Naumann G, Dutra E, Barbosa P, Pappenberger F, Wetterhall F, Vogt JV (2014) Comparison of drought indicators derived from multiple data sets over Africa. Hydrol. Earth Syst. Sci. 18:1625–1640

    Google Scholar 

  • Peng J, Liu Z, Liu Y, Wu J, Han Y (2012) Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol Indic 14:28–39

    Google Scholar 

  • Quiring SM, Ganesh S (2010) Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agric For Meteorol 150:330–339

    Google Scholar 

  • Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114:2875–2887

    Google Scholar 

  • Rojas O, Vrieling A, Rembold F (2011) Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115:343–352

    Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least-squares procedures. Analy Chem 36:1627–1639

    Google Scholar 

  • Schucknecht A, Erasmi S, Niemeyer I, Matschullat J (2013) Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Eur J Remote Sens 46:40–59

    Google Scholar 

  • Sehgal J, Mandal DK, Mandal C, Vadivelu S (1992) Agro-ecological regions of India, Second Edition, Tech. Bull No. 24, NBSS&LUP, 134p.

  • Seiler R, Kogan F, Sullivan J (1998) AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Adv Space Res 21:481–484

    Google Scholar 

  • Sierra-Soler A, Adamowski J, Malard J, Qi Z, Saadat H, Pingale S (2015) Assessing agricultural drought at a regional scale using LULC classification, SPI, and vegetation indices: case study in a rainfed agro-ecosystem in Central Mexico. Geomat Nat Haz Risk 7(4):1460–1488

    Google Scholar 

  • Singh RP, Kogan FN (2002) Monitoring vegetation condition from NOAA operational polar-orbiting satellites over Indian region. J Indian Soc Remote Sens 30(3):117–118

    Google Scholar 

  • Skakun S, Kussul N, Shelestov A, Kussul O (2016) The use of satellite data for agriculture drought risk quantification in Ukraine. Geomat Nat Haz Risk 7:901–917

    Google Scholar 

  • Sobrino JA, Julien Y (2011) Global trends in NDVI-derived parameters obtained from GIMMS data. Int J Remote Sens 32:4267–4279

    Google Scholar 

  • Son N, Chen C, Chen C, Chang L, Minh V (2012) Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int J Appl Earth Obs Geoinf 18:417–427

    Google Scholar 

  • Tadesse T, Champagne C, Wardlow BD, Hadwen TA, Brown JF, Demisse GB, Davidson AM (2017) Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results. GIsci Remote Sens. 54(2):230–257

  • Thenkabail PS, Gamage MSDN, Smakhtin VU (2004) The use of remote sensing data for drought assessment and monitoring in Southwest Asia. Research Report 85. Colombo, Sri Lanka: International Water Management Institute, pp.1–23.

  • Todmal RS (2019) Droughts and agriculture in the semi-arid region of Maharashtra, Western India. Weather Clim Soc 11(4):741–754

  • Townshend JRG, Justice CO, Li W, Gurney C, McManus J (1991) Global land cover classification by remote sensing: present capacities and future possibilities. Remote Sens Environ 35(2–3): 243−256, 243.

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190

    Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Google Scholar 

  • Velayutham M, Mandal DK, Mandal C, Sehgal J (1999) Agro-ecological subregions of India for development and planning, National Bureau of Soil Survey and Land Use Planning, Nagpur, India, NBSS Publ. 35, pp. 452.

  • Vyas SS, Bhattacharya BK (2020) Agricultural drought early warning from geostationary meteorological satellites: concept and demonstration over semi-arid tract in India. Environ Monit Assess 192:311

    Google Scholar 

  • Wang TM, Kou XJ, Xiong YC, Mou P, Wu JG, Ge JP (2010) Temporal and spatial patterns of NDVI and their relationship to precipitation in the Loess Plateau of China. Int J Remote Sens 31(7):1943–1958

    Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10(3):111–120

    Google Scholar 

  • Winkler K, Gessner U, Hochschild V (2017) Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: rainfall anomalies and vegetation condition in the context of ENSO. Remote Sens 9:831

    Google Scholar 

  • WMO (2012) Standardized precipitation index user guide (M. Svoboda, M. Hayes and D. Wood), (WMO-No. 1090), Geneva.

  • Xie B, Jia X, Qin Z, Shen J, Chang Q (2015) Vegetation dynamics and climate change on the Loess Plateau, China: 1982–2011. Reg. Environ. Chang. 16:1583–1594

    Google Scholar 

  • Zambrano F, Lillo-Saavedra M, Verbist K, Lagos O (2016) Sixteen years of agricultural drought assessment of the Biobío Region in Chile using a 250m resolution vegetation condition index (VCI). Remote Sens 8:530

    Google Scholar 

  • Zhang X, Chen N, Li J, Chen Z, Niyogi D (2017) Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sens Environ 188:141–163

    Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys Res Atmos 106:20069–20083

    Google Scholar 

Download references

Acknowledgments

We acknowledge the US Geological Survey (USGS) for providing the temporal MODIS 250m products (https://earthexplorer.usgs.gov/) through the Earth Explorer Data Gateway. The authors are thankful to all India Coordinated Research Project for Dryland Agriculture (CRIDA), Anantapuramu and Minor Irrigation, Department of Command Area Development, Anantapuramu, for their support in providing the climatic data for the study area. The support of Shri K.C. Arun Kumar, Young Professional—II in data processing and GIS mapping is duly acknowledged. We sincerely thank anonymous reviewers whose constructive comments and suggestions greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangalakunta P. Obi Reddy.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.P., Kumar, N., Sahu, N. et al. Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices. Arab J Geosci 13, 704 (2020). https://doi.org/10.1007/s12517-020-05611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05611-4

Keywords

  • SPI
  • MODIS
  • NDVI
  • VCI
  • VAI
  • Vegetation stress zones
  • Tropical arid ecosystem