Skip to main content

Advertisement

Log in

Characterization and exploitation of black shale as unconventional source of biohydrogen: a case study from the Abu-Tartur mine, Western Desert, Egypt

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Biohydrogen is a specific type of biogas produced by the anaerobic degradation of organic matter in the absence of methanogenic bacteria. Depending on the high sensitivity of methanogenic bacteria to oxygen, the surface outcrops of black shale are expected to be unfavorable environments for methanogenic bacteria. At this point, the present study sheds more light on the potential production of biohydrogen from Abu-Tartur black shale, as an example, located in the Western Desert of Egypt. A combination of analytical techniques including the LECO C230-carbon analyzer, Rock-Eval pyrolysis 6, optical and scanning electron microscopes, X-ray diffractometer, pH meter, polymerase chain reaction, and 16S ribosomal RNA analysis was used for the current work. The anaerobic fermentation was conducted at different solid densities 9%, 11%, 13%, and 15% for 5 weeks. Also, the influence of clay minerals on biohydrogen production along with the biodegradation of clay minerals on fermentation is considered. The overall results indicate the majority of samples are fair to good in organic richness (0.92–1.35 wt% TOC). The studied kerogen is classified as immature type III associated with montmorillonite, illite-montmorillonite mixed layer, and sepiolite. The low degree of thermal maturity is consistent with the high percentage of smectite expandable layers “> 60%.” On fermentation, noticeable volumes of biogas (average 10.2 cubic centimeters) were gradually adsorbed by clay minerals with increasing the total solid content from 9 to 15%. XRD patterns of fermented samples reveal the disappearance of montmorillonite and illite-montmorillonite mixed layer, with the persistence of sepiolite reflection peaks. On the other hand, the ribosomal sequence analysis “16S rRNA” refers to the absence of methanogenic bacteria and the dominant occurrence of Bacillus sp. and Lysinibacillus sp., which are well known for their ability to produce biohydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abu El-Ella R (1991) Relationship between clay mineralogy and thermal maturity of Neogene-Quaternary shales in Ras El-Barr well, offshore Nile Delta, Egypt. Mar Pet Geol 8:296–301

    Article  Google Scholar 

  • Ahmad F, Farouk S, Abd El-Moghny MW (2014) A regional stratigraphic correlation for the upper Campanian phosphorites and associated rocks in Egypt and Jordan. Proc Geol Assoc 125:419–431

    Article  Google Scholar 

  • Arora A, Banerjee S, Dutta S (2015) Black shale in late Jurassic Jhuran formation of Kutch: possible indicator of Oceanic Anoxic Evenet? J Geol Soc India 85:265–278

    Article  Google Scholar 

  • Bacon CA, Calver CR, Boreham CJ, Leaman DE, Morrison KC, Revill AT, Volkman JK (2000) The petroleum potential of onshore Tasmania-a review. Geol Surv Bull 71:93

    Google Scholar 

  • Bakonyi P, Nemestóthy N, Simon V, Bélafi-Bakó K (2014) Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renew Sust Energ Rev 40:806–813

    Article  Google Scholar 

  • Banerjee S, Sarkar S, Eriksson PG, Samanta P (2010) Microbially related structures in siliciclastic sediments resembling Ediacaran fossils: examples from India, ancient and modern. In: Seckbach J, Oren A (eds) Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Springer-Verlag, Berlin, pp 111–129

    Google Scholar 

  • Banerjee S, Sarkar S, Eriksson PG (2014) Palaeoenvironmental and biostratigraphic implications of microbial mat-related structures: examples from the modern Gulf of Cambay and the Precambrian Vindhyan Basin, India. J Palaeogeogr 3:127–144

    Google Scholar 

  • Behar F, Beaumont V, Penteado HL, De B (2001) Rock-Eval 6 technology: performances and Developments. Oil Gas Sci Technol Rev IFP 56(2):111–134

    Article  Google Scholar 

  • Boggs S (2009) Petrology of sedimentary rocks. Cambridge University Press

  • Bolton EW, Berner RA, Petsch ST (2006) The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modelling. Am J Sci 306:575–615

    Article  Google Scholar 

  • Boone DR, Xun L (1987) Effect of pH, Temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Appled Environ Microbiol 53(7):1589–1592

    Article  Google Scholar 

  • Brumsack H-J (2006) The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Paleogeographic Palaeoclimatology Palaeoecology 232(2):344–361

  • Budiyono, Widiasa IN, Johari S, Sunarso (2010) The influence of total solid contents on biogas yield from cattle manure using rumen fluid inoculum. Energy Res J 1:6–11

    Article  Google Scholar 

  • Chae KJ, Am J, Yim SK, Kim IS (2008) The effect of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour Technol 99:1–6

    Article  Google Scholar 

  • Cuadros J (2017) Clay minerals interactions with microorganisms: a review. Clay Miner 52:235–261

    Article  Google Scholar 

  • Das D, Khanna N, Dasgupta CN (2014) Hydrogen production processes. In: Das D, Khanna N, Dasgupta CN (eds) Biohydrogen production: fundamentals and technology advances. CRC Press, pp 55–100

  • Demaison GJ, Moore GT (1980) Anoxic environments and oil bed genesis. Am Soc Petroleum Geol Bull 64:1179–1209

    Google Scholar 

  • Disnar JR, Sureau JF (1990) Organic matter in ore genesis: progress and perspectives. Org Geochem 16:577–599

    Article  Google Scholar 

  • Donald LS (2003) Environmental Soil Chemistry. Elsevier Inc.

  • Eglinton G, Murphy MTJ (1969) Organic geochemistry: methods and results. Springer-Verlag Berlin Heidelberg GmbH.

  • El Ayyat AM (2015) Lithostratigraphy, sedimentology, and cyclicity of the Duwi Formation (Late Cretaceous) at Abu Tartur plateau, Western Desert of Egypt: evidences for reworking and redeposition. Arab J Geosci 89:99–124

  • El Kammar AM, El Kammar MM (1996) Potentiality of chemical weathering under arid conditions of black shales from Egypt. J Arid Environ 33:179–199

    Article  Google Scholar 

  • El Nady MM, Hammad MM (2015) Organic richness, kerogen types and maturity in the shales of the Dakhla and Duwi formations in Abu Tartur area, Western Desert, Egypt: Implication of Rock-Eval pyrolysis. Egypt J Pet 24:423–428

    Article  Google Scholar 

  • Espitalié J (1986) Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. In: Burrus J (ed) Thermal modelling in sedimentary basins. Editions Technip, Paris, pp 475–496

    Google Scholar 

  • Espitalié J, La Porte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Méthode rapide de caractérisation des roches mères, de leur potential pétrolier et de leur degré d’évolution. Rev Inst Fr Pétrol 32:23–42

    Article  Google Scholar 

  • Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Masßstab. UBA-Forschungsbericht 206:41–112

    Google Scholar 

  • Forster-Carneiro T, Pérez M, Romero LI (2008) Influence of total solid and inoculums contents on performance of anaerobic reactors treating food waste. Bioresour Technol 99:6994–7002

    Article  Google Scholar 

  • Gadikota G, Dazas B, Rother G, Cheshire MC, Bourg IC (2017) Hydrophobic solvation of gases (CO2, CH4, H2, noble Gases) in clay interlayer nanopores. J Phys Chem 121:26539–26550

    Google Scholar 

  • Ghimire A, Frunzo L, Pirozz F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  Google Scholar 

  • Goswami S, Mukherjee A, Zakaulla S, Rai AK (2016) Microbial mat related features in palaeoproterozoic gulcheru formation and their role in low grade uranium mineralization. Int J Petroleum Sci Eng 1:83–89

    Google Scholar 

  • Gupta P, Gupta S (2014) Biogas production from coal via anaerobic fermentation. Fuel 118:238–242

    Article  Google Scholar 

  • Haldar SK, Tišlja J (2014) Introduction to mineralogy and petrology. Elsevier Inc.

  • Hayakawa HM, Asano R, Ishikawa Y, Hidaka S (2013) Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem. J Geophys Res Biogeosci 118:639–649

    Article  Google Scholar 

  • Heeg K, Pohl M, Mumme J, Klocke M, Nettmann E (2014) Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Syst Appl Microbiol 37:590–600

    Article  Google Scholar 

  • Hermina M (1990) The surroundings of Kharga, Dakhla and Farafra oases. In: Said R (ed) The Geology of Egypt. Balkema, Rotterdam/ Brookfield, pp 259–292

    Google Scholar 

  • Hjorth M, Christensen KV, Christensen ML, Sommer SG (2010) Solid-liquid separation of animal slurry in theory and practice. A review. Agron Sustain Dev 30:153–180

    Article  Google Scholar 

  • Hoffman J, Hower J (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, USA. In: Scholle PA, Schluger PS (eds) Aspects of Diagenesis, vol 26. SEPM Special Publication, pp 55–79

  • Hower J, Eslinger EV, Hower ME, Perry EA (1976) Mechanism of burial metamorphism of argillaceous sediment: Mineralogical and chemical evidence. Geol Soc Amer Bull 87:725–737

    Article  Google Scholar 

  • Hu H (2014) Methane adsorption comparison of different thermal maturity kerogens in shale gas system. Chinese Journal of Geochemistry 33:425–430

  • Hunt JM (1996) Petroleum Geochemistry and Geology. W. H. Freeman and Company Press, New York

  • Issawi B (1972) Review of upper Cretaceous-lower tertiary stratigraphy in central and southern Egypt. Am Assoc Petrol Geol Bull 56:1448–1463

    Google Scholar 

  • Jaisi DP, Dong H, Liu C (2007) Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(II) in clay mineral nontronite, illite, and chlorite. Geochim Cosmochim Acta 71:1145–1158

    Article  Google Scholar 

  • Jarvie DM, Claxton BL, Henk F, Breyer JT (2001) Oil and shale gas from the Barnet Shale, Fort Worth basin, Texas. AAPG National Convention, June 3-6, 2001, Denver, CO, AAPG Bull. 85 (13): p. A100

  • Jenicek P, Keclik F, Maca J, Bindzar J (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci Technol 58:1491–1496

    Article  Google Scholar 

  • Kenig F, Hudson JD, Sinninghe Damsté JS, Popp BN (2004) Intermittent euxinia: reconciliation of a Jurassic black shale with its biofacies. Geology 32(5):421–424

    Article  Google Scholar 

  • Lawless AS (2012) Nature, distribution, origin and economics of glauconite in carbonate-phosphate-glauconite surficial deposits on central Chatham rise, Southwest Pacific. M.Sc. thesis, The University of Waikato, pp 44–45

  • Manger KC, Oliver SJP, Curtis JB, Scheper RJ (1991) Geological influence on the location and production of Antrim Shale Gas, Michigan Basin. So Petroleum Eng 21854:511–520

    Google Scholar 

  • McInerney MJ, Struchtemeryer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  Google Scholar 

  • Meslé M, Périot C, Dromart G, Oger P (2012) Biostimulation to identify microbial communities involved in methane generation in shallow, kerogen-rich shales. J Appl Microbiol 114:55–70

    Article  Google Scholar 

  • Moore DM, Reynolds RCJ (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York

    Google Scholar 

  • Mueller B (2015) Experimental Interactions Between Clay Minerals and Bacteria: A Review. Pedosphere 25:799–810

    Article  Google Scholar 

  • O'Brien NR (1996) Shale lamination and sedimentary processes. In: Kemp AES (ed) Palaeoclimatology and Palaeoceanography from Laminated Sediments, vol 116. Geological Society Special Publication, pp 23–36

  • Outtrup H, Jørgensen ST (2002) The Importance of Bacillus Species in the Production of Industrial Enzymes. In: Berkeley R, Heyndricks M, Logan N, De Vos P (eds) Applications and systematics of bacillus and relatives. Blackwell Science, pp 206–218

  • Pavan P, Musacco A, Cecchi F, Bassetti A, Mata-Alvarez J (1994) Thermophilic semi-dry anaerobic digestion process of the organic fraction of municipal solids waste during transient conditions. Environ Technol 15:1173–1182

    Article  Google Scholar 

  • Peters KE (1988) Guidelines for the evaluating petroleum source rock using programmed pyrolysis. Am Assoc Petroleum Geol Bull 70(3):318–329

    Google Scholar 

  • Peters KE, Cassa MR (1994) Applied source rock geochemistry. In: Magoon L, Dow WG (eds) The petroleum system-from source to trap. American Association of Petroleum Geologists, Tulsa

    Google Scholar 

  • Pollastro RM (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clay Clay Minerals 41(2):119–133

    Article  Google Scholar 

  • Raddadi N, Crotti E, Rolli E, Marasco R, Fava F, Daffonchio (2012) The most important bacillus species in biotechnology. In: Sansinenea E (ed) Bacillus thuringiensis Biotechnology. Springer Science+Business Media B.V., pp 329–346

  • Rallakis D, Michels R, Brouand M, Parize O, Cathelineau M (2019) The role of organic matter on uranium precipitation in Zoovch Ovoo, Mongolia. Minerals 9:1–23

    Article  Google Scholar 

  • Raposo F, Fernández-Cegri V, De la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijo M, Uellendah H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098

    Article  Google Scholar 

  • Rathore D, Singh A, Dahiya D, Nigam PS (2019) Sustainability of biohydrogen as fuel: present scenario and future perspective. AIMS Energy 7(1):1–19

    Article  Google Scholar 

  • Reece MSI (2017) Optimization of biogas production from brewery wastewater. Ph.D. thesis, University of Nairobi, pp 88–106

  • Robert M, Chenu C (1992) Interactions between soil minerals and microorganisms. In: Stotzky G, Bollag JM (eds) Soil Biochemistry. Marcel Dekker, New York, pp 307–403

    Google Scholar 

  • Robison VD (1986) Organic geochemical characterization of the late cretaceous-early tertiary transgressive sequence found in the Duwi and Dakhla formations, Egypt. Ph.D. thesis, University of Oklahoma, USA, pp. 1-196

  • Sadaka SS, dan Engler CR (2003) Effect of initial total solids on compositing of raw manure with biogas recovery. Compost Sci Utilizat 11:361–369

    Article  Google Scholar 

  • Sari A, Moradi AV, Akkaya P (2015) Evaluation of source rock potential, matrix effect and applicability of gas oil ratio potential factor in Paleocene-Eocene bituminous shales of Çamalan Formation, Nallıhan-Turkey. Mar Pet Geol 67:180–186

    Article  Google Scholar 

  • Shah AT, Favaro L, Alibardi L, Cagnin L, Sandon A, Cossu R, Casella S, Basaglia M (2016) Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste. Appl Energy 176:116–124

    Article  Google Scholar 

  • Shurr GW, Ridgley JL (2002) Conventional shallow biogenic gas systems. Am Assoc Petroleum Geol Bull 86(11):1939–1969

    Google Scholar 

  • Slonczewski JL, Foster JW (2014) Microbiology: an evolving science, 3rd edn. W.W. Norton and Company, New York

    Google Scholar 

  • Sommer SG, Husted S (1995) A simple model of pH in slurry. J Agric Sci Camb 124:447–453

    Article  Google Scholar 

  • Speight JG (2013) Shale gas production processes. Gulf Professional Publishing

  • Sprott DG, Shaw KM, Jarrell KF (1984) Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem 259(20):12602–12608

    Google Scholar 

  • Środoń J (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Minerals 28(6):401–411

    Article  Google Scholar 

  • Stolper DA, Lawson M, Davis CL, Ferreira AA, Santos Neto EV, Ellis GS, Lewan MD, Martini AM, Tang Y, Schoell SAL, Eiler JM (2014) Formation temperatures of thermogenic and biogenic methane. Sceince 344(6191):1500–1503

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) The solid-solution interface. In: John Wiley, Sons (Eds.) Aquatic chemistry. Chemical equilibria and rates in natural waters, New York, pp. 516-608

  • Vandenbroucke M (2003) Kerogen: from types to models of chemical structure. Oil & Gas Science and Technology-Rev. IFP 58(2):243–269

    Google Scholar 

  • Waples DW (1980) Time and temperature in petroleum formation: Application of Lopatin's method to petroleum exploration. Amer Assoc Petrol Geol Bull 64:916–926

  • Waples DW (1983) Reappraisal of anoxia and organic richness, with emphasis on Cretaceous of North Atlantic. Bull Am Asso Pet Geol 67:963–978

    Google Scholar 

  • Wignall PB (1994) Black shales. Clarendon Press, Oxford

    Google Scholar 

  • Wu LM, Zhou CH, Keeling J, Tong DS, Yu WH (2012) Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth-Sci Rev 115:373–386

    Article  Google Scholar 

  • Wuchter C, Banning E, Mincer TJ, Drenzek NJ, Coolen MJL (2013) Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells. Front Microbiol 4:1–14

    Article  Google Scholar 

  • Yanik J, Yüksel M, Sağlam M, Olukçu N, Bartle K, Frere B (1994) Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel 74:46–50

    Article  Google Scholar 

Download references

Acknowledgments

Authors are so grateful for the great collaboration provided by Stratochem Services, Cairo, during TOC & Rock-Eval assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Abdel-Hakeem.

Additional information

Responsible Editor: Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Habaak, G., Khalaphallah, R., Hassan, M. et al. Characterization and exploitation of black shale as unconventional source of biohydrogen: a case study from the Abu-Tartur mine, Western Desert, Egypt. Arab J Geosci 13, 467 (2020). https://doi.org/10.1007/s12517-020-05482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05482-9

Keywords

Navigation