Skip to main content
Log in

Development of surface reaction of nano-colloid minerals using novel ionic liquids and assessing their removal ability for Pb(II) and Hg(II)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The purpose of this study was to produce novel eco-friendly organoclays for removing toxic elements from aqueous environment. In the present research, nano-bentonite (Bent) and nano-montmorillonite (MT) minerals were treated with novel ionic liquids including 1-methyl-3-octylimidazolium chloride ([Omim][Cl]), 3,3′-(hexane-1,6-diyl) bis (1-methyl-imidazolium) bromide chloride ([H(mim)2[Br][Cl]), and 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]) to produce organoclays with eco-friendly features. The products were investigated using X-ray diffraction (XRD); Fourier transformed infrared spectroscopy (FT-IR); carbon, hydrogen, and nitrogen elemental analysis (CHN); scanning electron microscope (SEM); and specific surface area (SSA) (via N2-BET method) techniques. Finally, the mechanism involved in the adsorption of Pb(II) and Hg(II) onto organoclays from the aqueous phase was investigated by applying most three popular experimental adsorption isotherms including Langmuir, Freundlich, and Sips models. The results showed that by intercalating ILs, first XRD diffraction (d001) of the modified clays was increased. Based on the results of Sips model, [H(mim)2]-clays and [Omim]-clays had maximum adsorption capacity and maximum adsorption affinity. To the best of the authors’ knowledge, the amount of removed toxic metals by the modified clays in this research was more than those in the previous researches. This research demonstrated that clay mineral modifications using ILs is enhanced clay d-spacing and facilitated diffusion of the large hazardous metal ions into clay interlayer spaces. These increased their potential for toxic metal immobilization as green adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Cationic functionalisation of cellulose using a choline based ionic liquid analogue (10.1039/B605258D). Green Chem 8(9):784–786. https://doi.org/10.1039/B605258D

    Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Google Scholar 

  • Andrejkovičová S, Pentrák M, Komadel P (2010) Sorption of heavy metal cations on rhyolitic and andesitic bentonites from Central Slovakia. Geol Carpath 61(2):163–171

  • Anirudhan TS, Jalajamony S, Sreekumari SS (2012) Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Appl Clay Sci 65-66:67–71. https://doi.org/10.1016/j.clay.2012.06.005

  • Atwood JL, Steed JW (2004) Encyclopedia of supramolecular chemistry. CRC press

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1-3):219–243

    Google Scholar 

  • Bergaya, F., Jaber, M., & Lambert, J.-F. (2012). Clays and clay minerals as layered nanofillers for (bio) polymers. Environmental Silicate Nano-Biocomposites (pp. 41-75). Springer.

  • Bergaya F, Jaber M, Lambert JF (2011) Organophilic clay minerals. Science, Technology, and Applications, Rubber-Clay Nanocomposites, pp 45–86

    Google Scholar 

  • Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interf Sci 140(2):114–131. https://doi.org/10.1016/j.cis.2007.12.008

    Google Scholar 

  • Bolan NS, Adriano DC, Duraisamy P, Mani A, Arulmozhiselvan K (2003) Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant Soil 250(1):83–94. https://doi.org/10.1023/A:1022826014841

    Google Scholar 

  • Brown L, Seaton K, Mohseni R, Vasiliev A (2013) Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand. J Hazard Mater 261:181–187. https://doi.org/10.1016/j.jhazmat.2013.07.024

    Google Scholar 

  • Cabrera A, Trigo C, Cox L, Celis R, Cornejo J (2008) A comparative study of the use of organoclay-based formulations and organic amendment to reduce the leaching of the herbicide MCPA in soil. CLEAN–Soil, Air, Water 36(12):990–995

    Google Scholar 

  • Carvalho JC, de Vilhena MTMB (2005) Pollutant dispersion simulation for low wind speed condition by the ILS method. Atmos Environ 39(34):6282–6288. https://doi.org/10.1016/j.atmosenv.2005.07.007

    Google Scholar 

  • Cruz-Guzman M, Celis R, Hermosin M, Koskinen W, Nater E, Cornejo J (2006) Heavy metal adsorption by montmorillonites modified with natural organic cations. Soil Sci Soc Am J 70(1):215–221

    Google Scholar 

  • Darvishi Z, Morsali A (2011) Synthesis and characterization of nano-bentonite by solvothermal method. Colloids Surf A Physicochem Eng Asp 377(1):15–19

    Google Scholar 

  • dos Santos VCG, Grassi MT, Abate G (2015) Sorption of Hg(II) by modified K10 montmorillonite: Influence of pH, ionic strength and the treatment with different cations. Geoderma 237-238:129–136. https://doi.org/10.1016/j.geoderma.2014.08.018

    Google Scholar 

  • Frost RL, Kloprogge JT (2000) Vibrational spectroscopy of ferruginous smectite and nontronite. Spectrochim Acta A Mol Biomol Spectrosc 56(11):2177–2189

    Google Scholar 

  • Ganguly S, Dana K, Mukhopadhyay TK, Ghatak S (2011) Simultaneous intercalation of two quaternary phosphonium salts into montmorillonite. Clay Clay Miner 59(1):13–20

    Google Scholar 

  • Ganguly S, Dana K, Parya TK, Mukhopadhyay T, Ghatak S (2012) Organic-inorganic hybrids prepared from alkyl phosphonium salts intercalated montmorillonites. Ceramics-Silikáty 56(4):306–313

    Google Scholar 

  • Garau, G., Castaldi, P., Santona, L., Deiana, P., & Melis, P. (2007). Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142(1–2), 47-57. https://doi.org/10.1016/j.geoderma.2007.07.011.

  • Gilman JW, Awad WH, Davis RD, Shields J, Harris RH, Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, DeLong HC (2002) Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite. Chem Mater 14(9):3776–3785

    Google Scholar 

  • Groisman, L., Rav-Acha, C., Gerstl, Z., & Mingelgrin, U. (2004). Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays. Applied Clay Science, 24(3–4), 159-166. https://doi.org/10.1016/j.clay.2003.02.001.

  • Ha JU, Xanthos M (2009) Functionalization of nanoclays with ionic liquids for polypropylene composites. Polym Compos 30(5):534–542

    Google Scholar 

  • Haixia S, Zaijun L, Ming L (2007) Ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate as a solvent for extraction of lead in environmental water samples with detection by graphite furnace atomic absorption spectrometry (journal article). Microchim Acta 159(1):95–100. https://doi.org/10.1007/s00604-006-0720-9

    Google Scholar 

  • He H, Ma L, Zhu J, Frost RL, Theng BK, Bergaya F (2014) Synthesis of organoclays: a critical review and some unresolved issues. Appl Clay Sci 100:22–28

    Google Scholar 

  • He S, Zhu L (2016) Durability of organobentonite-amended liner for decelerating chloroform transport. Chemosphere 149:343–350. https://doi.org/10.1016/j.chemosphere.2016.01.088

    Google Scholar 

  • Hosseini M, Dalali N, Nejad SM (2012) A new mode of homogeneous liquid–liquid microextraction (HLLME) based on ionic liquids: in situ solvent formation microextraction (ISFME) for determination of lead. J Chin Chem Soc 59(7):872–878. https://doi.org/10.1002/jccs.201100526

    Google Scholar 

  • Huang L, Zhou Y, Guo X, Chen Z (2015) Simultaneous removal of 2,4-dichlorophenol and Pb(II) from aqueous solution using organoclays: isotherm, kinetics and mechanism. J Ind Eng Chem 22:280–287. https://doi.org/10.1016/j.jiec.2014.07.021

    Google Scholar 

  • Jackson TA (1998) The biogeochemical and ecological significance of interactions between colloidal minerals and trace elements. In: Parker A, Rae JE (eds) Environmental Interactions of Clays: Clays and the Environment. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 93–205. https://doi.org/10.1007/978-3-662-03651-8_5

    Google Scholar 

  • Jamal A, Delavar MA, Naderi A, Nourieh N, Medi B, Mahvi AH (2018) Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran. Human and Ecological Risk Assessment, An International Journal, pp 1–16

    Google Scholar 

  • Karczewska A, Orlow K, Kabala C, Szopka K, Galka B (2011) Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soils. Commun Soil Sci Plant Anal 42(12):1379–1389. https://doi.org/10.1080/00103624.2011.577858

    Google Scholar 

  • Lagadic IL, Mitchell MK, Payne BD (2001) Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay. Environ Sci Technol 35(5):984–990. https://doi.org/10.1021/es001526m

    Google Scholar 

  • Lagalya G, Dekanyb I (2013) Colloid clay science. Handbook of Clay Science 5:243

    Google Scholar 

  • Lakshmi Narayanan S, Venkatesan G, Vetha Potheher I (2017) Equilibrium studies on removal of lead (II) ions from aqueous solution by adsorption using modified red mud (journal article). Int J Environ Sci Technol 15:1687–1698. https://doi.org/10.1007/s13762-017-1513-x

    Google Scholar 

  • Lee J-J, Choi J, Park J-W (2002) Simultaneous sorption of lead and chlorobenzene by organobentonite. Chemosphere 49(10):1309–1315

    Google Scholar 

  • Li K, Kobayashi T (2016) A FT-IR spectroscopic study of ultrasound effect on aqueous imidazole based ionic liquids having different counter ions. Ultrason Sonochem 28:39–46

    Google Scholar 

  • Liao L, Lv G, Cai D, Wu L (2016) The sequential intercalation of three types of surfactants into sodium montmorillonite. Appl Clay Sci 119:82–86. https://doi.org/10.1016/j.clay.2015.08.003

    Google Scholar 

  • Livi S, Duchet-Rumeau J, Gérard J-F (2011) Supercritical CO 2–ionic liquid mixtures for modification of organoclays. J Colloid Interface Sci 353(1):225–230

    Google Scholar 

  • Lozano P, De Diego T, Sauer T, Vaultier M, Gmouh S, Iborra JL (2007) On the importance of the supporting material for activity of immobilized Candida antarctica lipase B in ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media. J Supercrit Fluids 40(1):93–100. https://doi.org/10.1016/j.supflu.2006.03.025

    Google Scholar 

  • Ma L, Xu R, Jiang J (2010) Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. J Environ Sci (China) 22(5):689–695 http://www.ncbi.nlm.nih.gov/pubmed/20608504

    Google Scholar 

  • Mendez A, Gomez A, Paz-Ferreiro J, Gasco G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89(11):1354–1359. https://doi.org/10.1016/j.chemosphere.2012.05.092

    Google Scholar 

  • Meng, Z., Lv, F., Zhang, Y., Zhang, Q., Zhang, Z., & Ai, S. (2015). Modified Na-montmorillonite with quaternary ammonium salts: application for removal of salicylic acid from aqueous solutions. CLEAN–Soil, Air, Water, 43(8), 1150-1156, Modified Na-Montmorillonite With Quaternary Ammonium Salts: Application for Removal of Salicylic Acid From Aqueous Solutions.

  • Naderi A, Delavar MA, Ghorbani Y, Kaboudin B, Hosseini M (2018) Modification of nano-clays with ionic liquids for the removal of Cd (II) ion from aqueous phase. Appl Clay Sci 158:236–245

    Google Scholar 

  • Naderi A, Delavar MA, Kaboudin B, Askari MS (2017) Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery (journal article). Environ Monit Assess 189(5):214. https://doi.org/10.1007/s10661-017-5821-x

    Google Scholar 

  • Nafees M, Waseem A (2014) Organoclays as sorbent material for phenolic compounds: a review. CLEAN–Soil, Air, Water 42(11):1500–1508

    Google Scholar 

  • Németh T, Jiménez-Millán J, Sipos P, Abad I, Jiménez-Espinosa R, Szalai Z (2011) Effect of pedogenic clay minerals on the sorption of copper in a Luvisol B horizon. Geoderma 160(3-4):509–516

    Google Scholar 

  • Okada, T., Morita, T., & Ogawa, M. (2005). Tris(2,2′-bipyridine)ruthenium(II)-clays as adsorbents for phenol and chlorinated phenols from aqueous solution. Applied Clay Science, 29(1), 45-53. doi:https://doi.org/10.1016/j.clay.2004.09.004.

  • Oyanedel-Craver VA, Smith JA (2006) Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. J Hazard Mater 137(2):1102–1114. https://doi.org/10.1016/j.jhazmat.2006.03.051

    Google Scholar 

  • Özkahraman B, Acar I, Emik S (2011) Removal of Cu2+ and Pb2+ ions using CMC based thermoresponsive nanocomposite hydrogel. CLEAN–Soil, Air, Water 39(7):658–664

    Google Scholar 

  • Page A, Miller R., & Keeney D 1159 (1982) 'Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy' Soil Sci Soc Am

  • Pálková H, Hronský V, Bizovská V, Madejová J (2015) Spectroscopic study of water adsorption on Li+, TMA+ and HDTMA+ exchanged montmorillonite. Spectrochim Acta A Mol Biomol Spectrosc 149:751–761. https://doi.org/10.1016/j.saa.2015.04.065

    Google Scholar 

  • Park CW, Kim BH, Yang H-M, Seo B-K, Moon J-K, Lee K-W (2017) Removal of cesium ions from clays by cationic surfactant intercalation. Chemosphere 168:1068–1074

    Google Scholar 

  • Paul BK, Moulik SP, Kunz W (2015) Ionic liquid-based surfactant science: formulation, characterization, and applications. Wiley

  • Phothitontimongkol T, Siebers N, Sukpirom N, Unob F (2009) Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution. Appl Clay Sci 43(3-4):343–349. https://doi.org/10.1016/j.clay.2008.09.016

    Google Scholar 

  • Porter SK, Scheckel KG, Impellitteri CA, Ryan JA (2004) Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Crit Rev Environ Sci Technol 34(6):495–604. https://doi.org/10.1080/10643380490492412

    Google Scholar 

  • Repo E, Malinen L, Koivula R, Harjula R, Sillanpää M (2011) Capture of Co (II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan. J Hazard Mater 187(1):122–132

    Google Scholar 

  • Rusmin R, Sarkar B, Tsuzuki T, Kawashima N, Naidu R (2017) Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: material characterization and regeneration studies. Chemosphere 186:1006–1015

    Google Scholar 

  • Sarkar B, Megharaj M, Shanmuganathan D, Naidu R (2013) Toxicity of organoclays to microbial processes and earthworm survival in soils. J Hazard Mater 261:793–800. https://doi.org/10.1016/j.jhazmat.2012.11.061

    Google Scholar 

  • Say R, Birlik E, Erdemgil Z, Denizli A, Ersöz A (2008) Removal of mercury species with dithiocarbamate-anchored polymer/organosmectite composites. J Hazard Mater 150(3):560–564. https://doi.org/10.1016/j.jhazmat.2007.03.089

    Google Scholar 

  • Sayed M, Burham N (2017) Removal of cadmium (II) from aqueous solution and natural water samples using polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent (journal article). Int J Environ Sci Technol 15:105–118. https://doi.org/10.1007/s13762-017-1369-0

    Google Scholar 

  • Scheidegger AM, Sparks DL, Fendorf M (1996) Mechanisms of nickel sorption on pyrophyllite: macroscopic and microscopic approaches. Soil Sci Soc Am J 60(6):1763–1772

    Google Scholar 

  • Shen T, Gao M, Ding F, Zeng H, Yu M (2018) Organo-vermiculites with biphenyl and dipyridyl gemini surfactants for adsorption of bisphenol A: structure, mechanism and regeneration. Chemosphere 207:489–496

    Google Scholar 

  • Şimşek S, Baybaş D, Koçyiğit MÇ, Yıldırım H (2014) Organoclay modified with lignin as a new adsorbent for removal of Pb2+ and UO2 2+ (journal article). J Radioanal Nucl Chem 299(1):283–292. https://doi.org/10.1007/s10967-013-2754-x

    Google Scholar 

  • Şölener M, Tunali S, Özcan AS, Özcan A, Gedikbey T (2008) Adsorption characteristics of lead (II) ions onto the clay/poly (methoxyethyl) acrylamide (PMEA) composite from aqueous solutions. Desalination 223(1-3):308–322

    Google Scholar 

  • Souza MA, Larocca NM, Pessan LA (2016) Highly thermal stable organoclays of ionic liquids and silane organic modifiers and effect of montmorillonite source. J Therm Anal Calorim 126(2):499–509

    Google Scholar 

  • Stathi P, Litina K, Gournis D, Giannopoulos TS, Deligiannakis Y (2007) Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. J Colloid Interface Sci 316(2):298–309. https://doi.org/10.1016/j.jcis.2007.07.078

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. John Wiley

  • Swift RS, McLaren RG (1991) Micronutrient adsorption by soils and soil colloids. In: Bolt GH, De Boodt MF, Hayes MHB, McBride MB, De Strooper EBA (eds) Interactions at the Soil Colloid — Soil Solution Interface. Springer Netherlands, Dordrecht, pp 257–292. https://doi.org/10.1007/978-94-017-1909-4_9

    Google Scholar 

  • Tashauoei HR, Attar HM, Amin MM, Kamali M, Nikaeen M, Dastjerdi MV (2010) Removal of cadmium and humic acid from aqueous solutions using surface modified nanozeolite A (journal article). Int J Environ Sci Technol 7(3):497–508. https://doi.org/10.1007/bf03326159

    Google Scholar 

  • Turan NG, Elevli S, Mesci B (2011) Adsorption of copper and zinc ions on illite: determination of the optimal conditions by the statistical design of experiments. Appl Clay Sci 52(4):392–399

    Google Scholar 

  • Unuabonah EI, Olu-Owolabi BI, Adebowale KO (2016) Competitive adsorption of metal ions onto goethite–humic acid-modified kaolinite clay (journal article). Int J Environ Sci Technol 13(4):1043–1054. https://doi.org/10.1007/s13762-016-0938-y

    Google Scholar 

  • Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 6(7):1017–1022

    Google Scholar 

  • Vancov T, Alston A-S, Brown T, McIntosh S (2012) Use of ionic liquids in converting lignocellulosic material to biofuels. Renew Energy 45:1–6. https://doi.org/10.1016/j.renene.2012.02.033

    Google Scholar 

  • Venegas-Sanchez JA, Motohiro T, Takaomi K (2013) Ultrasound effect used as external stimulus for viscosity change of aqueous carrageenans. Ultrason Sonochem 20(4):1081–1091. https://doi.org/10.1016/j.ultsonch.2013.01.002

    Google Scholar 

  • Venkatesan G, Rajagopalan V (2016) Adsorption kinetic models for the removal of Cu(II) from aqueous solution by clay liners in landfills (journal article). Int J Environ Sci Technol 13(4):1123–1130. https://doi.org/10.1007/s13762-016-0951-1

    Google Scholar 

  • Wanigasekara E, Perera S, Crank JA, Sidisky L, Shirey R, Berthod A, Armstrong DW (2010) Bonded ionic liquid polymeric material for solid-phase microextraction GC analysis. Anal Bioanal Chem 396(1):511–524. https://doi.org/10.1007/s00216-009-3254-2

    Google Scholar 

  • Wu P, Zhang Q, Dai Y, Zhu N, Dang Z, Li P, Wu J, Wang X (2011) Adsorption of Cu (II), Cd (II) and Cr (III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma 164(3-4):215–219

    Google Scholar 

  • Xi Y, Ding Z, He H, Frost RL (2005) Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochim Acta A Mol Biomol Spectrosc 61(3):515–525

    Google Scholar 

  • Yan Z, Meng D, Huang Y, Hou Z, Wu X, Wang Y, du X, Xie H (2014) Modification of kaolinite with alkylimidazolium salts. J Therm Anal Calorim 118(1):133–140

    Google Scholar 

  • Yariv S, Cross H (2001) Organo-clay complexes and interactions. CRC Press

  • Yu K, Xu J, Jiang X, Liu C, McCall W, Lu J (2017) Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere 184:884–891

    Google Scholar 

  • Zehhaf A, Benyoucef A, Quijada C, Taleb S, Morallón E (2015) Algerian natural montmorillonites for arsenic(III) removal in aqueous solution (journal article). Int J Environ Sci Technol 12(2):595–602. https://doi.org/10.1007/s13762-013-0437-3

    Google Scholar 

  • Zhao R, Zhou Z, Zhao X, Jing G (2018) Enhanced Cr (VI) removal from simulated electroplating rinse wastewater by amino-functionalized vermiculite-supported nanoscale zero-valent iron. Chemosphere.

  • Zhu J, Qing Y, Wang T, Zhu R, Wei J, Tao Q, Yuan P, He H (2011) Preparation and characterization of zwitterionic surfactant-modified montmorillonites. J Colloid Interface Sci 360(2):386–392

    Google Scholar 

  • Zupancic M, Lavric S, Bukovec P (2012) Metal immobilization and phosphorus leaching after stabilization of pyrite ash contaminated soil by phosphate amendments (10.1039/C2EM10798H). J Environ Monit 14(2):704–710. https://doi.org/10.1039/C2EM10798H

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the University of Zanjan (ZNU) and specially the helps of laboratory expert Mr. Ali Bayat who sadly passed away at the time of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amir Delavar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A., Delavar, M.A., Ghorbani, Y. et al. Development of surface reaction of nano-colloid minerals using novel ionic liquids and assessing their removal ability for Pb(II) and Hg(II). Arab J Geosci 13, 381 (2020). https://doi.org/10.1007/s12517-020-05419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05419-2

Keywords

Navigation