Skip to main content

Advertisement

Log in

Prediction of scour pattern around hydraulic structures using geostatistical methods

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Simulation of sediment movement, identification of scour pattern, and sediment variations play an important role in river rehabilitation and protection of hydraulic structures considering their stability and safety. In general, different shapes of abutments (circular, vertical, and wing wall) and also spur dikes were employed to protect against scouring. The main purpose of this paper is to investigate spatial variations of local scour depth around these hydraulic structures using deterministic spatial estimator known as InverseDistance Weighed (IDW), and two geostatistical approaches known as Ordinary Kriging (OK) and Bayesian Maximum Entropy (BME). To achieve this goal, experimental tests were conducted to measure scour pattern under three types of abutments and spur dikes. To evaluate the results of scour depth, leave-one-out cross-validation technique has been used. The comparison of the computed versus observed scour depth depicts that geostatistical methods (OK and BME) can estimate the maximum scour depth more reliably and accurately than IDW method. Experimental results show that the trend of scour depth for all abutment types does not significantly differ. Maximum scour depths at the wing wall abutment were lower than vertical abutment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmad M (1953) Experiments on design and behavior of spur dikes. In Proceedings: Minnesota International Hydraulic Convention, Minneapolis, Minn, 145–159

  • Akib, S., Rahman, S., Shamshirband, S. (2014) Adaptive neuro-fuzzy estimation of bridge girder forces with perforations under tsunami wave loading. J Coast Conserv, 1–9

  • Basser H, Shamshirband S, Karami H, Petković D, Akib S, Jahangirzadeh A (2014a) Adaptive neuro-fuzzy selection of the optimal parameters of protective spur dike. Nat Hazards 73(3):1393–1404

    Google Scholar 

  • Basser H, Shamshirband S, Petković D, Karami H, Akib S, Jahangirzadeh A (2014b) Adaptive neuro-fuzzy prediction of the optimum parameters of protective spur dike. Nat Hazards 73(3):1439–1449

    Google Scholar 

  • Bateni SM, Jeng DS (2007) Estimation of pile group scour using adaptive neuro-fuzzy approach. Ocean Eng 34(8–9):1344–1354

    Google Scholar 

  • Bateni SM, Borghei SM, Jeng DS (2007a) Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng Appl Artif Intell 20(3):401–414

    Google Scholar 

  • Bateni SM, Jeng DS, Melville BW (2007b) Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers. Adv Eng Softw 38(2):102–111

    Google Scholar 

  • Bayat B, Zahraie B, Taghavi F, Nasseri M (2013) Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns. Theor Appl Climatol 113:429–444

    Google Scholar 

  • Bayat B, Nasseri M, Naser G (2014) Improving Bayesian maximum entropy and ordinary kriging methods for estimating precipitations in a large watershed: a new cluster-based approach. Can J Earth Sci 51(1):43–55

    Google Scholar 

  • Bayat B, Nasseri M, Zahraie B (2015) Identification of long-term annual pattern of meteorological drought based on spatiotemporal methods: evaluation of different geostatistical approaches. Nat Hazards 76:515–541

    Google Scholar 

  • Baykal C, Sumer BM, Fuhrman DR, Jacobsen NG, Fredsøe J (2015) Numerical investigation of flow and scour around a vertical circular cylinder. Philos Trans R Soc A Math Phys Eng Sci 373(2033):20140104

    Google Scholar 

  • Brandimarte L, Paron P, Di Baldassarre G (2012) Bridge pier scour: a review of processes, measurements and estimates. Environ Eng Manag J 11(5):975–989

    Google Scholar 

  • Chang WY, Jihn-Sung LAI, Teng-Yi YU, Franco LIN, Lung-Cheng LEE, Whey-Fone TSAI, Chin-Hsiung LOH (2014) Pier scour monitoring system by bed-level image tracking. Int J Sediment Res 29(2):269–277

    Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Christakos G, Bogaert P, Serre ML (2002) Temporal GIS. Springer-Verlag Press, New York

    Google Scholar 

  • Cressie N (1985) Fitting variogram models by weighted least squares. Journal of the International Association for Mathematical Geology 17 (5):563-586

    Google Scholar 

  • Dey S, Barbhuiya AK (2005) Turbulent flow field in a scour hole at a semicircular abutment. Can J Civ Eng 32(1):213–232

    Google Scholar 

  • Dixen M, Sumer BM, Fredsøe J (2013) Numerical and experimental investigation of flow and scour around a half-buried sphere. Coast Eng 73:84–105

    Google Scholar 

  • D'Or D, Bogaert P, Christakos G (2001) Application of the BME approach to soil texture mapping. Stoch Env Res Risk A 15(1):87–100

    Google Scholar 

  • Douaik A, Van Meirvenne M, Tóth T, Serre M (2004) Space-time mapping of soil salinity using probabilistic bayesian maximum entropy. Stoch Env Res Risk A 18(4):219–227

    Google Scholar 

  • Douaik A, Van Meirvenne M, Tóth T (2005) Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data. Geoderma 128(3–4):234–248

    Google Scholar 

  • Fael C, Lança R, Cardoso A (2016) Effect of pier shape and pier alignment on the equilibrium scour depth at single piers. Int J Sediment Res 31(3):244–250

    Google Scholar 

  • Fazli M, Ghodsian M, Neyshabouri SAAS (2008) Scour and flow field around a spur dike in a 90 bend. Int J Sediment Res 23(1):56–68

    Google Scholar 

  • Gamma Design Software (2001) GS+ user’s guide version 5.1.1. Gamma Design Software, Plainwell

  • Garde RJ, Subramanya KS, Nambudripad KD (1961) Study of scour around spur-dikes. J Hydraul Div 87(6):23–37

    Google Scholar 

  • Ghodsian M, Vaghefi M (2009) Experimental study on scour and flow field in a scour hole around a T-shape spur dike in a 90 bend. Int J Sediment Res 24(2):145–158

    Google Scholar 

  • Gill MA (1972) Erosion of sand beds around spur dikes. J Hydraul Div 98(9):1587–1610

    Google Scholar 

  • Homayoon R, Keshavarzy A, Gazni R (2010) Application of artificial neural network, Kriging, and inverse distance weighting models for estimation of scour depth around bridge pier with bed sill. J Softw Eng Appl 3:944–964

    Google Scholar 

  • Hussain I, Pilz J, Spoeck G (2010) Hierarchical Bayesian space-time interpolation versus spatio-temporal BME approach. Adv Geosci 25:97

    Google Scholar 

  • Jahangirzadeh A, Shamshirband S, Petković D, Basser H, Sedaghat A, Akib S, Karami H (2014) Adaptive neuro-fuzzy estimation of the influence of slot on local scour at bridge pier groups. J Coast Conserv, 1–9

  • Jeng DS, Bateni SM, Lockett E (2005) Neural network assessment for scour depth around bridge piers. Civil Engineering Research Rep R855:1–89

    Google Scholar 

  • Karami H, Ardeshir A, Saneie M, Behzadian K, Jalilsani F (2008) Reduction of local scouring with protective spur dike. In World Environmental and Water Resources Congress 2008: Ahupua'A, Hawaii, USA, 1–9

  • Karami H, Ardeshir A, Behzadian K, Ghodsian M (2011) Protective spur dike for scour mitigation of existing spur dikes. J Hydraul Res 49(6):809–813

    Google Scholar 

  • Karami H, Ardeshir A, Saneie M, Salamatian SA (2012) Prediction of time variation of scour depth around spur dikes using neural networks. J Hydroinf 14(1):180–191

    Google Scholar 

  • Karami H, Basser H, Ardeshir A, Hosseini SH (2014) Verification of numerical study of scour around spur dikes using experimental data. Water Environ J 28(1):124–134

    Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications to hydrogeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Laursen E, Christofferson J (1962) Discussion of ‘study of scour around spur dikes’. J Hydraul Div 89:225–228

    Google Scholar 

  • Li J, Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Canberra, Geoscience Australia

  • Li J, Qi M (2015) Local scour induced by upstream riverbed level lowering. Nat Hazards 77(3):1811–1827

    Google Scholar 

  • Liao KW, Guo JJ, Fan JC, Huang CL, Chang SH (2019) Estimation of soil depth using Bayesian maximum entropy method. Entropy 21(1):69

    Google Scholar 

  • Lim SY (1997) Equilibrium clear-water scour around an abutment. J Hydraul Eng 123(3):237–243

    Google Scholar 

  • Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication, Colorado

    Google Scholar 

  • Mohammadpour R (2017) Prediction of local scour around complex piers using GEP and M5-tree. Arab J Geosci 10(18):416

    Google Scholar 

  • Muzzammil M, Alam J (2011) ANFIS-based approach to scour depth prediction at abutments in armored beds. J Hydroinf 13(4):699–713

    Google Scholar 

  • Roulund A, Sumer BM, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pile. J Fluid Mech 534:351–401

    Google Scholar 

  • Savelieva E, Demyanov V, Kanevski M, Serre M, Christakos G (2005) BME-based uncertainty assessment of the chernobyl fallout. Geoderma 128(3–4):312–324

    Google Scholar 

  • Serre ML, Christakos G (1999) Modern geostatistics: computational BME analysis in the light of uncertain physical knowledge–the Equus beds study. Stoch Env Res Risk A 13(1–2):1–26

    Google Scholar 

  • Serre ML, Christakos G, Li H, Miller CT (2003) A BME solution of the inverse problem for saturated groundwater flow. Stoch Env Res Risk A 17(6):354–369

    Google Scholar 

  • Shamshirband S, Gocić M, Petković D, Saboohi H, Herawan T, Kiah MLM, Akib S (2015) Soft-computing methodologies for precipitation estimation: a case study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(3):1353–1358

    Google Scholar 

  • Sumer BM, Fredsøe J, Bundgaard K (2005) Global and local scour at pile groups. In The Fifteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers

  • Yu HL, Chu HJ (2010) Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. J Hydrol 381(3–4):239–247

    Google Scholar 

  • Zaghloul NA (1983) Local scour around spur-dikes. J Hydrol 60(1–4):123–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojat Karami.

Additional information

Responsible Editor: Stefan Grab

Appendix

Appendix

Percent Average Estimation Error (PAEE):

$$ PAEE=\frac{1}{\overline{X}N}\sum \limits_{i=1}^N abs\left\{X\left({\overrightarrow{s}}_i\right)-\hat{X}\left({\overrightarrow{s}}_i\right)\right\}, $$
(A)

where, \( \overline{X} \)is average of the observed values, N is number of observed values, \( X\left({\overrightarrow{s}}_i\right) \)is observed values in location \( \overrightarrow{s}=\left({s}_1,{s}_2\right) \), \( \hat{X}\left({\overrightarrow{s}}_i\right) \)is estimated values in location \( \overrightarrow{s}=\left({s}_1,{s}_2\right) \) and abs is returns absolute value.

Normalized Mean Square Error (NMSE):

$$ NMSE=\frac{1}{S^2N}\sum \limits_{i=1}^N{\left\{X\left({\overrightarrow{s}}_i\right)-\hat{X}\left({\overrightarrow{s}}_i\right)\right\}}^2, $$
(B)

where S2 is the variance of observed values.

Mean Absolute Error (MAE) or Bias:

$$ MAE=\frac{1}{N}\sum \limits_{i=1}^N abs\left\{X\left({\overrightarrow{s}}_i\right)-\hat{X}\left({\overrightarrow{s}}_i\right)\right\}. $$
(C)

Mean Square Error (MSE):

$$ MSE=\frac{1}{N}\sum \limits_{i=1}^N{\left\{X\left({\overrightarrow{s}}_i\right)-\hat{X}\left({\overrightarrow{s}}_i\right)\right\}}^2. $$
(D)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, H., Bayat, B., Hosseini, K. et al. Prediction of scour pattern around hydraulic structures using geostatistical methods. Arab J Geosci 12, 801 (2019). https://doi.org/10.1007/s12517-019-4992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4992-x

Keywords

Navigation