Skip to main content

Advertisement

Log in

Evaluation of liquefaction-induced lateral displacement using a GMDH-type neural network optimized by genetic algorithm

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Liquefaction-induced lateral spreading is known to be a significant type of damage for engineering structures. This research introduces an evolutionary algorithm by using a combination of the group method of data handling (GMDH)–type neural network and genetic algorithm for predicting liquefaction-induced lateral displacements. A new and comprehensive database containing 526 case histories from 18 significant earthquakes is compiled and analyzed to develop a new predictive model. Also, the developed equation evaluated the results of previously published experimental studies and showed an acceptable performance. The obtained results show a more accurate performance of the proposed model compared with previous models. Since the presented model has been developed based on numerous seismic events and site conditions, it is more general and reliable than other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdoun, T. H., 1997.Modeling of seismically induced lateral spreading of multi-layered soil and its effect on pile foundations. PHD Thesis, Rensselaer Polytechnic Institute, Troy, New York

  • Ambraseys NN, Bommer JJ (1991) The attenuation of ground acceleration in Europe. Earth Eng Struct Dyn 20(12):1179–1202

    Article  Google Scholar 

  • Ambraseys NN, Menu JM (1988) Earthquake induced ground displacements. Earth Eng Struct Dyn 16(1):985–1006

    Article  Google Scholar 

  • Arulmoli, K.; Muraleetharan, K. K.; Hossain, M. M.; and Fruth, L. S., 1992. Verification of liquefaction analysis by centrifuge studies laboratory testing program soil data.Technical Report, Earth. Tech. Corp., Irvine, California, 404p

  • Atashkari K, Nariman-Zadeh N, Golcu M, Khalkhali A, Jamali A (2007) Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energy Convers Manag 48(3):1029–1041

    Article  Google Scholar 

  • Bandini V, Biondi G, Cascone E, Rampello S (2015) A GLE-based model for seismic displacement analysis of slopes including strength degradation and geometry rearrangement. Soil Dyn Earthq Eng 71:128–142

    Article  Google Scholar 

  • Bartlet, S. F.; and Youd, T. L., 1992. Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spreads. Technical report no. NCEER-91-0021, National Center for earthquake engineering research. State University of New York at Buffalo, NY

  • Bartlet SF, Youd TL (1995) Empirical prediction of liquefaction-induced lateral spread. J Geotechnical Eng.Div 121(4):316–329

    Article  Google Scholar 

  • Baziar M\H, Ghorbani A (2005) Evaluation of lateral spreading using artificial neural networks. Soil Dynamics and Earthquake Engineering 25 (1):1-9

  • Biondi G, Cascone E, Maugeri M, Motta E (2000) Seismic response of saturated cohesionless slopes. Soil Dyn Earthq Eng 20:209–215

    Article  Google Scholar 

  • Bolton MD (1991) Geotechnical stress analysis for bridge abutment design. Report 270. Transport and Road Research Laboratory, Crowthorne

    Google Scholar 

  • Cetin KO, Youd TL, Seed RB, Bray JD, Sancio R, Lettis W, Tolga MT, Durgunoglu HT (2002) Liquefaction-induced ground deformations at Hotel Sapanca during Kocaeli (Izmit)-Turkey earthquake. Int J Soil Dyn Earth Eng 22:1083–1092

    Article  Google Scholar 

  • Cetin KO, Youd TL, Seed RB, Bray JD, Sancio R, Lettis W, Durgunoglu HT, Tolga MT (2004) Liquefaction-induced lateral spreading at Izmit Bay during the Kocaeli (Izmit)-Turkey earthquake. J Geotech Geoenviron Eng 130(12):1300–1313

    Article  Google Scholar 

  • Chu DB, Stewart JP, Youd TL, Chu BL (2006) Liquefaction-induced lateral spreading in near-fault regions during the 1999 Chi-Chi, Taiwan earthquake. J Geotech Geoenviron Eng 132:1549–1565

    Article  Google Scholar 

  • Elgamal AW, Zeghal M, Taboada V, Dobry R (1996) Analysis of site liquefaction and lateral spreading using centrifuge testing records. Soil Found J Jap Geotec Soc 36(2):111–121

    Article  Google Scholar 

  • Finn WDL, Ledbetter RH, Wu G (1994) Liquefaction in silty soils: design and analysis. Ground Failures Seismic ConditionsGeotec Spec Pub 44:51–76

    Google Scholar 

  • Garcia SR, Romo MP, Botero E (2008) A neurofuzzy system to analyze liquefaction-induced lateral spread.Soil Dyn. Earth Eng 28:169–180

    Google Scholar 

  • Gu WH, Morgenstern NR, Robertson PK (1993) Progressive failure of lower San Fernando dam. J Geotech Eng 119(2):333–349

    Article  Google Scholar 

  • Gu WH, Morgenstern NR, Robertson PK (1994) Post-earthquake deformation analysis of wildlife site. J Geotech Eng 120(2):274–289

    Article  Google Scholar 

  • Hamada M, Towhata I, Yasuda S, Isoyama R (1987) Study on permanent ground displacements induced by seismic liquefaction. Comp Geomec 4:197–220

    Google Scholar 

  • Holzer T, Bennett MJ, Ponti DJ, Tinsley JC (1999) Liquefaction and soil failure during the 1994 Northridge earthquake. J Geotech Geoenviron Eng 125(6:438–452

    Article  Google Scholar 

  • Holzer, T.; Noce, T. E.; Bennett, M. J.; Alessandro, C.; Boatwrite, J.; Tinsley, J. C.; Sell, R. W.; and Rosenberg, L. I., 2004. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake.USGS Open-File Report No. 2004–1269, Version 1.0

  • Iba H, de Garis H, Sato T (1994) Genetic programming using a minimum description length principle. Adv In Gen Prog 12:265–284

    Google Scholar 

  • Ivakhnenko AG (1971) Polynomial theory of complex systems.IEEE Trans. SysMng Cyber SMC-1:364–378

    Google Scholar 

  • Javadi AA, Rezania M, Mousavi Nezhad M (2006) Evaluation of liquefaction induced lateral displacements using genetic programming. J Comp Geotech 33:222–233

    Article  Google Scholar 

  • Joyner WJ, Boore DM (1991) Strong earthquake ground motion and engineering design. Geotech News 9(1):21–26

    Google Scholar 

  • Juang, C.H. and Jiang, T. 2000. Assessing probabilistic methods for liquefaction potential evaluation. Geotechnical Special PublicationNo. 107, Soil Dyn. Liquefaction 2000, R.Y.S. Pak and J.Yamamura, eds., ASCE, Reston, VA., 148–162

  • Kanibir A (2003) Investigation of the lateral spreading at Sapanca and suggestion of empirical relationships for predicting lateral spreading. M.Sc. Thesis, Department of Geological Engineering, Hacettepe University, Ankara

    Google Scholar 

  • Makdisi FI, Seed HB (1978) Simplified procedure for estimating dam and embankment earthquake-induced deformations. J Geotech Eng Div 104(GT7):849–867

    Google Scholar 

  • Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh GR (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and predicting of the explosive cutting process. Inst Mech Eng 217(B):779–790

    Article  Google Scholar 

  • Newmark NM (1965) Effects of earthquakes on embankments and dams. Géotechnique 15(2):139–160

    Article  Google Scholar 

  • Olson SM, Johnson CI (2002) Analyzing liquefaction-induced lateral spreads using strength ratios. J Geotech Geoenviron Eng 134(8):1035–1049

    Article  Google Scholar 

  • Onwubolu GC (2008) Design of hybrid differential evolution and group method in data handling networks for modeling and prediction. Inform Sci 178:3618–3634

    Article  Google Scholar 

  • Onwubolu, G.C.; Sharma, S.; Bhartu, D. A., Shankar, D. A., and Katafono, K., 2008. Hybrid particle swarm optimization and group method of data handling for inductive modeling.Proc., Int. Conf. on Inductive Modeling, Kyiv, Ukraine, September 15–19

  • PEER Website (1999) peer.berkeley.edu/turkey/adapazari, A Collaborative Research by U.C. Berkeley, Brigham Young University, and UCLA with ZETAS, Sakarya University, and Middle East Technical University

  • Rojahn, C.; Brogan, G. E.; and Siemmons, D. B., 1977.Preliminary report on the San Juan, Argentina earthquake of November 23, 1977: U. S.Geological Survey, Menlo Park

  • Sanchez E, Shibata T, Zadeh LA (1997) Genetic algorithms and fuzzy logic systems.River edge, NJ: world scientific

  • Sasajima, T.; Kabouchi, A.; Kohama, E.; Watanabe, J.; Miura, K.; and Otsuka, N., 2005.Liquefaction induced deformation of test quay wall in Kushiro Port during the 2003 Tokachi-oki earthquake.Earthq Eng Soil Dyn, 1-15

  • Seed, H. B.; Arango, I.; Chan, C. K.; Gomez-Masso, A.; and Ascoli, R. G., 1979.Earthquake-induced liquefaction near Lake Amatitlan, Guatemala.Report No. UCB/EERC-79/27

  • Sharp KM, Dobry R, Abdoun T (2003a) Centrifuge modeling of liquefaction and lateral spreading of virgin, over-consolidated and pre-shaken sand deposits. Int J Phys Model Geotechnics 2:11–20

    Article  Google Scholar 

  • Sharp KM, Dobry R, Abdoun T (2003b) Liquefaction centrifuge modeling of sands of different permeability. J Geotech Geoenviron Eng 129(12):1083–1091

    Article  Google Scholar 

  • Stark TD, Mesri G (1992) Undrained shear strength of liquefied sands for stability analysis. J Geotech Eng 118:1727–1747

    Article  Google Scholar 

  • Taboada VM, Dobry R (1998) Centrifuge modeling of earthquake-induced lateral spreading in sand. J Geotech Geoenviron Eng 124(12):1195–1206

    Article  Google Scholar 

  • Tokimatsu K, Kojima H, Kuwayama S, Abe A, Midorikawa S (1994) Liquefaction-induced damage to buildings in 1990 Luzon earthquake. J Geotech Eng 120(2):290–307

    Article  Google Scholar 

  • Towhata I, Sasaki Y, Tokida KI, Matsumoto H, Tamari Y, Yamada K (1992) Prediction of permanent displacement of liquefied ground by means of minimum energy principle. Soils Foundations, JSSMFE 32(3):97–116

    Article  Google Scholar 

  • Valsmais A, Bouckovalas G, Papadimitriou A (2010) Parametric investigation of lateral spreading of gently sloping liquefied ground. J Soil Dyn Earthq Eng 30:490–508

    Article  Google Scholar 

  • Wang J, Rahman MS (1999) A neural network model for liquefaction induced horizontal ground displacement. J Soil Dyn Earthq Eng 18:555–568

    Article  Google Scholar 

  • Youd TL, Perkins DM (1987) Mapping of liquefaction severity index. J Geotech Eng 113(11):1374–1391

    Article  Google Scholar 

  • Youd TL, Hansen CM, Bartlett SF (2002) Revised multilinear regression equations for prediction of lateral spread displacement. J Geotech Geoenviron Eng 128(12):1007–1017

    Article  Google Scholar 

  • Yuan HL, Yang SH, Andrus RD, Juang CH (2003) Liquefaction- induced ground failure: a study of the Chi-Chi earthquake cases. J Eng Geology 17:141–155

    Google Scholar 

  • Zhang J, Zhao JX (2005) Empirical models for estimating liquefaction-induced lateral spread displacement. J Soil Dyn Earthq Eng 25:439–450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Maghsoudi.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhi, F., Firoozfar, A. & Maghsoudi, M.S. Evaluation of liquefaction-induced lateral displacement using a GMDH-type neural network optimized by genetic algorithm. Arab J Geosci 13, 4 (2020). https://doi.org/10.1007/s12517-019-4980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4980-1

Keywords

Navigation