Skip to main content

Advertisement

Log in

Up-scaling of crop productivity estimations using the AquaCrop model and GIS-based operations

  • ICWEES2018 & IWFC2018
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Crop models are useful in evaluating management strategies and exploration of new practices, particularly in studies related to climate change and productivity assessment of agricultural systems. At field level, biophysical crop models are generally suitable in homogeneous environments when accurate input data and calibration parameters are available. However, their use at watershed level is limited, especially in hilly areas with great variability of soils, slope, and land use. Systematic method considering all terrain variabilities is time consuming since it requires high-resolution data and parameterization effort while geospatial models like SWAT, using simplified crop modules do not reflect the complexity of the simulated processes. In this work, an alternative methodology is proposed and tested in the hilly Mediterranean watershed of Kamech located in the Cap Bon Peninsula, Tunisia (N 36.88°, E 10.88°); it uses the FAO AquaCrop biophysical model to estimate production in selected fields and scale up the results to the watershed level. Maps of soil, slope, and land use are combined by a GIS tool to obtain a database of averaged field properties and occupations. Three categories of texture, depths, and slopes were considered to classify the 313 fields of the watershed into 27 soil classes and determine their respective area-weighting factor. The systematic method considering all fields and the proposed method considering the 27 representative fields were used to estimate the watershed production for dominant crops: wheat, barley, and faba bean. Results show a good correlation between both methods with values of relative RMSD in the range of 0.5–2% for biomass and 2–5% for grain yield. Decile-decile analysis showed that the proposed methodology simulated almost all the observed spatial variability of yield within the watershed suggesting its suitability for productivity assessment and prediction in hilly fragmented agricultural landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adam M, Van Bussel LGJ, Leffelaar PA, Van Keulen H, Ewert F (2011) Effects of modelling detail on simulated crop productivity under a wide range of climatic conditions. Ecol Model 222:131–143

    Article  Google Scholar 

  • Alaya I, Masmoudi MM, Lagacherie P, Coulouma G, Jacob F, Ben Mechlia N (2017) Performance of Saxton and Rawls pedotransfer functions for estimating soil water properties in the Cap Bon Region-Northern Tunisia. In: Ouessar M, Gabriels D, Tsunekawa A, Evett S. (eds) Water and land security in drylands. Springer International Publishing, pp 77–85.

  • Aloui A, Masmoudi MM, Jacob F, Ben Mechlia N (2012) Use of the AquaCrop model for the simulation of wheat evapotranspiration in north-eastern Tunisia. Geophysical Research Abstracts vol. 14. EGU 2012–11842.

  • Andarzian B, Bannayan M, Steduto P, Mazraeh H, Barati ME, Barati MA, Rahnama A (2011) Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agric Water Manag 100:1–8

    Article  Google Scholar 

  • Araya A, Habtu S, Hadgu KM, Kebede A, Dejene T (2010) Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agric Water Manag 97:1838–1846

    Article  Google Scholar 

  • Ben Mechlia N, Oweis T, Masmoudi M, Mekki I, Ouessar M, Zante P, Zekri S (2008) Conjunctive use of rain and irrigation water from hill reservoirs for agriculture in Tunisia. On farm water husbandry research report No 6, ICARDA, Aleppo Syria vi +28 pp.

  • Ben Mechlia N, Oweis T, Masmoudi M, Khatteli H Ouessar M Sghaier N, Anane M, Sghaier M (2009) Assessment of supplemental irrigation and water harvesting potential: methodologies and case studies from Tunisia. ICARDA, Aleppo, Syria. iv + 36 pp.

  • Ben Slimane A (2013) Rôle de l’érosion ravinaire dans l’envasement des retenues collinaires dans la Dorsale tunisienne et le Cap Bon. PhD Thesis, Montpellier SupAgro, France

  • Bocchiola D, Nana E, Soncini A (2013) Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agric Water Manag 116:50–61

    Article  Google Scholar 

  • Boudhina N, Masmoudi MM, Alaya I, Jacob F, Ben Mechlia N (2019) Use of AquaCrop model for estimating crop evapotranspiration and biomass production in hilly topography. Arab J Geosci 12(259). https://doi.org/10.1007/s12517-019-4434-9

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzui P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332

    Article  Google Scholar 

  • Brown RA, Rosenberg NJ (1997) Sensitivity of crop yield and water use to change in a range of climatic factors and CO2 concentrations: a simulation study applying EPIC to the Central United States. Agric For Meteorol 83:171–203

    Article  Google Scholar 

  • Butcher JB, Johnson TE, Nover D, Sarkar S (2014) Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. J Hydrol 513:322–334

    Article  Google Scholar 

  • Butterworth MH, Semenov MA, Barnes A, Moran D, West JS, Fitt BDL (2010) North-South divide: contrasting impacts of climate change on crop yields in Scotland and England. J R Soc Interface 7:123–130

    Article  Google Scholar 

  • Campbell BM, Vermeulen SJ, Aggarwal PK, Corner-Dolloff C, Girvetz E, Loboguerrero AM, Ramirez-Villegas J, Rosenstock T, Sebastian L, Thornton P, Wollenberg E (2016) Reducing risks to food security from climate change. Glob Food Sec 11:34–43

    Article  Google Scholar 

  • Dechmi F, Burguete J, Skhiri A (2012) SWAT application in intensive irrigation systems: model modification, calibration and validation. J Hydrol 470–471(2012):227–238

    Article  Google Scholar 

  • Demetriou D (2014) The development of an integrated planning and decision support system for land consolidation. Dissertation. University of Leeds

  • El Mokh F, Vila-Garcia M, Nagaz K, Masmoudi MM, Ben Mechlia N, Fereres E (2017) In: Ouessar M, Gabriels D, Tsunekawa A, Evett S (eds) Water and land security in drylandsCalibration of AquaCrop salinity stress parameters for barley under different irrigation regimes in a dry environment. Springer International Publishing, pp 43–55

  • Ewert F, Rotter RP, Bindi M, Webber H, Trnka M, Kersebaum KC, Olesen JE, Van Ittersum MK, Janssen S, Rivington M, Semenov MA, Wallach D, Porter JR, Stewart D, Verhagen J, Gaiser T, Palosuo T, Tao F, Nendel C, Roggero PP, Bartosova L, Asseng S (2015a) Crop modelling for integrated assessment of risk to food production from climate change. Environ Model Softw 72:287–303

    Article  Google Scholar 

  • Ewert F, van Bussel L, Zhao G, Hoffmann H et al (2015b) Uncertainties in scaling-up crop models for large area climate change impact assessments. In: Rosenzweig C, Hillel D (eds) Handbook of climate change and agroecosystems: the Agricultural Model Intercomparison Project (AgMIP). World Scientific Publishing Company, pp 262–277

  • Farina R, Seddaiu G, Orsini R, Steglich E, Roggero PP, Francaviglia R (2011) Soil carbon dynamics and crop productivity as influenced by climate change in a rainfed cereal system under contrasting tillage using EPIC. Soil Tillage Res 112:36–46

    Article  Google Scholar 

  • Faramarzi M, Yang H, Schulinc R, Abbaspoura KC (2010) Modeling wheat yield and crop water productivity in Iran: implications of agricultural water management for wheat production. Agric Water Manag 97:1861–1875

    Article  Google Scholar 

  • Fereres E, Walker S, Heng LK, Hsiao TC, Steduto T, Raes D, Izzi G, Asseng S, Evett SR (2012) AquaCrop applications. In: Steduto P, Hsiao TC, Fereres E, Raes D (eds) Crop yield response to water. FAO Irrigation and Drainage Paper, vol 66. FAO, Rome, pp 50–69

    Google Scholar 

  • Fischer G, Shah M, Tubiello FN, van Velhuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos Trans R Soc Lond Ser B Biol Sci 360:2067–2083

    Article  Google Scholar 

  • Foster T, Brozović N, Butler AP, Neale CMU, Raes D, Steduto P, Fereres E, Hsiao TC (2017) AquaCrop-OS: an open source version of FAO’s crop water productivity model. Agric Water Manag 181:18–22

    Article  Google Scholar 

  • Geri F, Amici V, Rocchini D (2010) Human activity impact on the heterogeneity of a Mediterranean landscape. Appl Geogr 30:370–379

    Article  Google Scholar 

  • Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob Planet Chang 68:209–224

    Article  Google Scholar 

  • Han C, Zhang B, Chen H, Wei Z, Liu Y (2019) Spatially distributed crop model based on remote sensing. Agric Water Manag 218:165–173

    Article  Google Scholar 

  • Hansen JW, Jones JW (2000) Scaling-up crop models for climate variability application. Agric Syst 65:43–72

    Article  Google Scholar 

  • Heng LK, Hsiao TC, Evett S, Howell T, Steduto P (2009) Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron J 101(2009):488–498. https://doi.org/10.2134/agronj2008.0029xs

    Article  Google Scholar 

  • Hoffmann H, Zhao G, Asseng S, Bindi M, Biernath C, Constantin J, Coucheney E, Dechow R, Doro L, Eckersten H, Gaiser T, Grosz B, Heinlein F, Kassie BT, Kersebaum KC, Klein C, Kuhnert M, Lewan E, Moriondo M, Nendel C, Priesack E, Raynal H, Roggero PP, Rötter RP, Siebert S, Specka X, Tao F, Teixeira E, Trombi G, Wallach D, Weihermüller L, Yeluripati J, Ewert F (2016) Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS One 11:1–23. https://doi.org/10.1371/journal.pone.0151782

    Article  Google Scholar 

  • Holzkämper A, Calanca P, Honti M, Fuhrer J (2015) Projecting climate change impacts on grain maize based on three different crop model approaches. Agric For Meteorol 214–215:219–230

    Article  Google Scholar 

  • Hoogenboom G, Tsuji GY, Jones JW, Singh U, Godwin DC, Pickering NB, Curry RB (1995) Decision support system to study climate change impacts on crop production. In: Rosenzweig C, Allen LH, Harper LA, Hollinger SE, Jones JW (eds) Climate change and agriculture: analysis of potential international impacts. ASA Special Publication No 59, Madison, pp 51–75

    Google Scholar 

  • Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E (2009) AquaCrop-the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J 101:448–459

    Article  Google Scholar 

  • Huang F, Li B (2010) Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: part I: method development and validation. Agric Water Manag 97(7):1077–1092. https://doi.org/10.1016/j.agwat.2010.02.016

    Article  Google Scholar 

  • IAO (2002) Land resources of the Oued Lebna catchment (Tunisia). 20th course professional Master “Remote sensing and natural resources evaluation”, Istituto Agronomico per l’Oltremare, vol 132, Florence-Italy

  • Inoubli N, Raclot D, Mekki I, Moussa R, Le Bissonnais Y (2017) A spatiotemporal multiscale analysis of runoff and erosion in a Mediterranean marly catchment. Vadose Zone J 16:1–12. https://doi.org/10.2136/vzj2017.06.0124

    Article  Google Scholar 

  • Jin X, Kumar L, Li Z, Xu X, Yang G, Wang J (2016) Estimation of winter wheat biomass and yield by combining the AquaCrop model and field hyperspectral data. Remote Sens 8:972

    Article  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security – a review. Prog Nat Sci 19:1665–1674

    Article  Google Scholar 

  • Kim D, Kaluarachchi J (2015) Validating FAO AquaCrop using Landsat images and regional crop information. Agric Water Manag 149:143–155

    Article  Google Scholar 

  • Largani AS (2013) Modelling regional land use : The quest for appropriate method. PhD thesis, Wageningen University

  • Leclere D, Jayet PA, Noblet-Ducoudre N (2013) Farm-level autonomous, adaptation of European agricultural supply to climate change. Ecol Econ 87:1–14

    Article  Google Scholar 

  • Lorite IJ, García-Vilab M, Santos C, Ruiz-Ramos M, Fereres E (2013) AquaData and AquaGIS: two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Comput Electron Agric 96:227–237

    Article  Google Scholar 

  • Lorite IJ, Garcia-Vila M, Fereres E (2015) AquaCrop-GIS version 2.1 Reference Manual, Food and Agriculture Organization of the United Nations, vol 18, FAO Rome, Italy

  • Mainuddin M, Kirby M, Hoanh CT (2011) Adaptation to climate change for food security in the lower Mekong Basin. Food Sec 3:433–450. https://doi.org/10.1007/s12571-011-0154-z

    Article  Google Scholar 

  • Mekki I (2003) Analyse et modélisation de la variabilité des flux hydriques à l’échelle d’un bassin versant cultivé alimentant un lac collinaire du domaine semi-aride méditerranéen (Oued Kamech, Cap Bon, Tunisie). PhD. Dissertation, Montpellier II University, France 173 pp..

  • Mekki I, Zitouna-Chebbi R, Jacob F, Ben Mechlia N, Prevot L, Albergel J, Voltz M (2018) Impact of land use on soil water content in a hilly rainfed agrosystem: a case study in the cap bon peninsula in Tunisia. Agrofor Int J 3:64–75

    Google Scholar 

  • Mitter H, Heumesser C, Schmid E (2015) Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change. Land Use Policy 46:75–90

    Article  Google Scholar 

  • Morschel (2010) L’eau et les paysages dans la dorsale Tunisienne: Expliquer le cheminement des flux hydriques en fonction des organisations présentes dans le milieu naturel. Nice Sophia Antipolis University, France, PhD. Dissertation

    Google Scholar 

  • OMERE (2017) The Mediterranean Observatory of Rural Environment and Water. (http://www.obs-omere.org), accessed January 2017.

  • Panday SG (2014) Use of remote sensing data in a crop growth model to estimate actual crop yields: testing AquaCrop with NDVI time series for two crops in Spain. Master Dissertation, Twenty University

  • Parry M, Rosenzweig C, Livermore M (2005) Climate change, global food supply and risk of hunger. Philos Trans R Soc B 360:2125–2138

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/

    Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2009) AquaCrop – the FAO crop model to simulate yield response to water. II. Main algorithms and software description. J Agron 101:438–447

    Article  Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate-change on world food-supply. Nature 367:133–138

    Article  Google Scholar 

  • Rosenzweig C, Wilbanks TJ (2010) The state of climate change vulnerability, impacts, and adaptation research: strengthening knowledge base and community. Clim Chang 100:103–106

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578

    Article  Google Scholar 

  • Schierhorn F, Faramarzi M, Prishchepov A.V, Koch F.J, Müller D (2014) Quantifying yield gaps in wheat production in Russia. Environ Res Lett. 9 084017, 12 pp, https://doi.org/10.1088/1748-9326/9/8/084017.

    Article  Google Scholar 

  • Scholten H (2008) Better modelling practice: an ontological perspective on multidisciplinary, model-based problem solving. PhD. Dissertation. Wageningen University, the Netherlands

  • Sghaier N, Masmoudi MM, Ben Mechlia N (2014) Paramétrage du modèle AquaCrop pour la simulation de la culture du blé dur. Revue des Régions Arides 35:1351–1360

    Google Scholar 

  • Soil Survey Staff (1951) Soil texture. In: Soil Survey Staff (Ed.), Soil Survey Manual, United States Department of Agriculture Handbook, United States Government Printing Office, Washington DC, pp 205–213.

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) Aqua-Crop the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101:426–437

    Article  Google Scholar 

  • Stöckle CO, Steve AM, Campbell GS (1994) CropSyst: a cropping system simulation model: water/nitrogen budgets and crop yield. Agric Syst 46:335–359

    Article  Google Scholar 

  • Sys I, Van Ranst E, Debaveye J (1991) Land evaluation, part II) Methods in land evaluation. Agriculture Publication no 7. General Administration for Development Cooperation, Brussels, Belgium, pp 70–76

  • Tubiello FN, Donatelli M, Rosenzweig C, Stöckle CO (2000) Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron 13:179–189

    Article  Google Scholar 

  • Tubiello FN, Ewert F (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron 18:57–74

    Article  Google Scholar 

  • Van Bussel LGJ (2011) From field to globe: upscaling of crop growth modelling. PhD. Dissertation, Wageningen University, the Netherlands.

  • Van Gaelen H (2016) Evaluation of agricultural management from field to catchment scale: development of a parsimonious agro-hydrological model. PhD. Dissertation, KU Leuven University, Belgium.

  • Vanuytrecht E, Raes D, Steduto P, Hsiao TC, Fereres E, Heng LK, Vila MG, Moreno PM (2014) AquaCrop: FAO’S crop water productivity and yield response model. Environ Model Softw 62:351–360. https://doi.org/10.1016/j.envsoft.2014.08.005

    Article  Google Scholar 

  • Voloudakis D, Karamanos A, Economou G, Kalivas D, Vahamidis P, Kotoulas V, Kapsomenakis J, Zerefos C (2015) Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis. Agric Water Manag 147:116–128

    Article  Google Scholar 

  • Webber H, Gaiser T, Ewert F (2014) What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa? Agric Syst 127:161–177

    Article  Google Scholar 

  • White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crop Res 124:357–368

    Article  Google Scholar 

  • Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Transaction of the ASAE 27:129–144

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Article  Google Scholar 

  • Yin X (2013) Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity. Ann Bot 112:465–475

    Article  Google Scholar 

  • Yuan M, Zhang L, Gou F, Su Z, Spiertz JHJ, van der Werf W (2013) Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia. Agric Water Manag 122:28–38

    Article  Google Scholar 

  • Zante P, Collinet J, Pepin Y (2005) Caractéristiques pédologiques et hydro-météorologiques du bassin versant de Kamech, Cap Bon, Tunisie. UMR LISAH IRD Tunis, DG ACTA Direction des Sols Tunis. INRGREF, Tunis

    Google Scholar 

  • Zitouna-Chebbi R, Prévot L, Chakhar A, Marniche- Ben Abdallah M, Jacob F, 2018 Observing actual evapotranspiration from flux tower eddy covariance measurements within a hilly watershed: case study of the Kamech site, Cap Bon Peninsula, Tunisia. Atmosphere 9: 68. DOI https://doi.org/10.3390/atmos90200680.

Download references

Acknowledgments

The support of the French Institute of Research for Development (IRD), the Institut National Agronomique de Tunisie (INAT), and ANR-ALMIRA project is acknowledged. Climatic data and land use maps were gratefully made available by the Mediterranean Observatory of Rural Environment and Water (OMERE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Masmoudi.

Additional information

This article is part of the Topical Collection on Geo-environmental integration for sustainable development of water, energy, environment and society

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaya, I., Masmoudi, M.M., Jacob, F. et al. Up-scaling of crop productivity estimations using the AquaCrop model and GIS-based operations. Arab J Geosci 12, 419 (2019). https://doi.org/10.1007/s12517-019-4588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4588-5

Keywords