Skip to main content
Log in

Response of groundwater contamination hazard rating systems to variations in subsoil conditions beneath municipal solid waste (MSW) dumps in developing countries

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Groundwater hazard rating systems are generally based on source-pathway-receptor approach. This study determines the response of rating system to the variations in subsurface conditions (generally designated as pathway component). Besides, the study also investigates the ability of the rating systems to respond to the changes in other components too (i.e., source and receptor components). For the purpose, three groups of sites with various combinations of site conditions, that may be encountered in the field, are employed, e.g., a smaller site located in sandy soil with receptors all around it using groundwater or a larger site having a thick clay layer underneath it and the receptors in vicinity using groundwater for drinking. For the analysis, four sets of corresponding rating scores are determined in this study from the selected eleven rating systems (ten earlier rating systems and mGW-HARS, a recently developed system). The investigation shows that mGW-HARAS performs the best for the three sets; for the remaining one set, the performance of mGW-HARAS is marginally lower than its predecessor, GW-HARAS. The sensitivity analysis of the selected rating systems with respect to four critical pathway parameters depicts that mGW-HARAS is sensitive to all the four parameters and has the highest sensitivity to soil permeability, i.e., 83% amongst all the selected rating systems. When these rating systems are applied to ten waste dumps from Indian cities, only one system, i.e., mGW-HARAS, is able to categorize these waste dumps in four hazard categories and responds suitably to the subsurface conditions encountered at these waste dumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aller L, Bennett T, Lehr J H, Petty RJ (1985) DRASTIC-a standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA/600/2-85/018

  • CCME (2008) CCME national classification system for contaminated sites. Winnipeg, Canada

    Google Scholar 

  • Chen W, Mo J, Du X, Zhang Z, Zhang W (2019) Biomimetic dynamic membrane for aquatic dye removal. Water Res 151:243–251

    Article  Google Scholar 

  • Christensen TH, Manfredi S, Kjeldsen P (2011) Landfilling: environmental issues. In: Christensen TH (ed) Solid waste technology & management. Wiley

  • CPCB (2006) Assessment of status of municipal solid waste management in metro cities and state capitals. Series: WPS/65/2006–07

  • Datta M, Kumar A (2016) Waste dumps and contaminated sites in India—status and framework for remediation and control. In: Geo-Chicago 2016. ASCE, Chicago, USA, pp 664–673

  • Datta M, Kumar A (2017) Assessment of subsurface contamination potential of municipal solid waste (MSW) dumps. Indian Geotech J 47:410–420. https://doi.org/10.1007/s40098-017-0247-5

    Article  Google Scholar 

  • Department of Natural Resources (2001) Wisconsin administrative code, chapter NR 710, site discovery, screening and ranking, register September 2007 no. 621

  • Ghazavi R, Ebrahimi Z (2015) Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int J Environ Sci Technol 12(9):2909–2918

    Article  Google Scholar 

  • Joseph K, Esakku S, Nagendran R, Visvanathan C (2005) A decision making tool for dumpsite rehabilitation in developing countries. In: Proceedings of tenth international waste management and landfill symposium Sardinia. Cagliari, Italy

  • Kumar S, Bhattacharyya JK, Vaidya AN, Chakrabarti T, Devotta S, Akolkar AB (2009) Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: an insight. Waste Manag 29(2):883–895. https://doi.org/10.1016/j.wasman.2008.04.011

    Article  Google Scholar 

  • Kumar A, Datta M, Nema AK, Singh RK (2016) An improved rating system for assessing surface water contamination potential from MSW landfills. Environ Model Assess 21(4):489–505. https://doi.org/10.1007/s10666-015-9493-z

    Article  Google Scholar 

  • Macfarlane DS, Cherry JA, Gillham RW, Sudicky EA (1983) Migration of contaminants in groundwater at a landfill: a case study. J Hydrol 63:1–29

    Article  Google Scholar 

  • Ministry for the Environment (NZ) (2002) Risk assessment for small closed landfill. Prepared for Ministry of the Environment (New Zealand). Retrieved from http://www.mfe.govt.nz/publications/waste/small-landfill-closure-dec02.html. Accessed 09 Dec 2018

  • Ministry for the Environment (NZ) (2004) Risk screening system, contaminated land management guidelines no. 3. Ministry for the Environment, Wellington Retrieved from www.mfe.govt.nz. Accessed 08 Aug 2014

    Google Scholar 

  • Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z (1983) A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag 227:395–405

    Article  Google Scholar 

  • National Productivity Council (2003) Hazard potential rating of existing municipal solid waste dump sites. New Delhi, India

  • Nixon WB, Murphy RJ (1998) Waste site hazard assessment: a taxonomy of current methods and criteria. Environ Eng Policy 1(1):59–74. https://doi.org/10.1007/s100220050006

    Article  Google Scholar 

  • Science Applications International Corporation (1990) Washington ranking method scoring manual. Olympia, Washington

  • Sharma HD, Lewis SP (1994) Waste containment systems, waste stabilization, and landfill design and evaluation. John Wiley & Sons, Inc

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. John Wiley & Sons, Hoboken

    Google Scholar 

  • Singh RK, Datta M, Nema AK (2009) A new system for groundwater contamination hazard rating of landfills. J Environ Manag 91(2):344–357. https://doi.org/10.1016/j.jenvman.2009.09.003

    Article  Google Scholar 

  • Singh RK, Datta M, Nema AK (2010) A time-dependent system for evaluating groundwater contamination hazard rating of municipal solid waste dumps. Environ Model Assess 15:549–567. https://doi.org/10.1007/s10666-010-9224-4

    Article  Google Scholar 

  • Singh RK, Datta M, Nema AK, Pérez IV (2013) Evaluating groundwater contamination hazard rating of municipal solid waste landfills in India and Europe using a new system. J Hazard Toxic Radioact Waste 17(1):62–73. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000145

    Article  Google Scholar 

  • Tanse B, Reinhart D, Sizirici B, Rayapharapu VK (2007) Performance measures for comparison of determining post closure care (PCC) period in landfills. In: World environmental and water resources congress 2007. https://doi.org/10.1061/40927(243)322

  • Ubavin D, Agarski B, Maodus N, Stanisavljevic N, Budak I (2017) A model for prioritising landfills for remediation and closure: a case study in Serbia. Integr Environ Assess Manag 14:105–119. https://doi.org/10.1002/ieam.1967

    Article  Google Scholar 

  • USEPA (1990) Hazard ranking system, final rule December 14, 1990. Retrieved from http://www.epa.gov/superfund/sites/npl/hrsres/index.htm#HRS Rule. Accessed 15 Jan 2013

  • Zhang W, Jiang F (2018) Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): effect of AGS size. Water Res 157:445–453. https://doi.org/10.1016/j.watres.2018.07.069

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Science and Engineering Research Board (no. PDF/2016/000716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial handling: Zhien Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Datta, M., Gurjar, B.R. et al. Response of groundwater contamination hazard rating systems to variations in subsoil conditions beneath municipal solid waste (MSW) dumps in developing countries. Arab J Geosci 12, 405 (2019). https://doi.org/10.1007/s12517-019-4560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4560-4

Keywords

Navigation