Skip to main content
Log in

Groundwater depth monitoring and short-term prediction: applied to El Hamma aquifer system, southeastern Tunisia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In arid and semi-arid areas, such as Tunisia, groundwater depth assessment and monitoring is an important task for groundwater resources sustainable management. The objective of this work is to assess and forecast groundwater depth (GWDs) at short-term, under different impact factors, using stochastic time series (STS) and artificial neural network (ANN). Each model was conceptualized and implemented. Groundwater depth, rainfall, pumping rate and temperature over the period 30 years extending from 1986 to 2016 were used. Root mean squared error, bias, R2, AIC, and BIC were used as sensitivity model performance criteria. Models were implemented, trained, and tested over an observation period and forecasting groundwater depth at short-term over a period 2017–2030. Results show that groundwater abstraction rates increase around 0.46 Mm3/year, whereas a groundwater depth is in continuously drawdown with a rate of 0.3 m/year which requires a monitoring network for sustainable management of water resources. The results are promising and indicate an outstanding suitability of stochastic time series and ANN models for groundwater depth assessment and predictions at short time. The predicted results at short-term will help to draw attention of local authority for clear groundwater sustainable management policy for studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(S 1–4):28–40

    Article  Google Scholar 

  • Agoubi B, Kharroubi A, Bouri S, Abida H (2010) Contribution of geostatistical modelling to mapping groundwater level and aquifer geometry, case study of Sfax’s deep aquifer. Tunisia Middle East J Sci Res 6(3):305–316

    Google Scholar 

  • Agoubi B, Souid F, Telahigue F, Kharroubi A (2015) Temperature and Radon-222 as tracer of groundwater flow: application to El Hamma geothermal aquifer system, southeastern Tunisia. Arab J Geosci 8:11161–11174. https://doi.org/10.1007/s12517-015-1998-x

    Article  Google Scholar 

  • Akaike H (1974) New look at statistical model identification. IEEE Trans Autom Control AC 19:716–722

    Article  Google Scholar 

  • Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Statistics Surveys 4:40–79. https://doi.org/10.1214/09-SS054

    Article  Google Scholar 

  • Chen LH, Chen CT, Pan YG (2011) Groundwater level prediction using SOM-RBFN multisite model. J Hydrol Eng 15(8):624–631

    Article  Google Scholar 

  • Chu D., Hole W., 2004. The GLOBEC kriging software package EasyKrig3.0

  • Felisa G, Ciriello V, Antonellini M, Di Federico V, Tartakovsky DM (2015) Data-driven models of groundwater salinization in coastal plains. J Hydrol 531:187–197

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, p 483

  • Issaks EH, Srivastava RM (1989) Applied Geostatistics. Oxford University Press, New York

    Google Scholar 

  • Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intell 4(2):99–104

    Article  Google Scholar 

  • Khalil B, Ouarda TBMJ, St-Hilaire A (2011) Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J Hydrol 405:277–287. https://doi.org/10.1016/j.jhydrol.2011.05.024

    Article  Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics, application in hydrogeology. University Press, Cambridge, pp 86–95, ISBN 0-521-58747-6

    Book  Google Scholar 

  • Krishna B, Rao YRS, Vijiaya T (2008) Modeling groundwater level in urban coastal aquifer using artificial neural networks. Hydrol Process 22(8):1180–1188

    Article  Google Scholar 

  • Lo DC, Wei CC, Tsai EP (2015) Parameter automatic calibration approach for neural-network-based cyclonic precipitation forecast models. Water 7:3963–3977. https://doi.org/10.3390/w7073963

    Article  Google Scholar 

  • Makni J, Ben Brahim F, Hassine S, Bouri S, Ben Dhia H (2012) Hydrogeological and mixing process of waters in deep aquifers in arid regions: south East Tunisia. Arab J Geosci 7(7):799–809. https://doi.org/10.1007/s12517-012-0793-1

    Article  Google Scholar 

  • Matheron G., 1970. Note de géostatistique N° 107, Krigeage universel pour une dérive aléatoire, Cahiers du Centre de Morphologie Mathematique, Ecole des Mines de Paris, Fontainebleau. 33p (in French)

  • McPhie S, Post R, 2016. Groundwater drought indicator lags time and barometric evaluation. Nottawasaga Valley conservation authority, 8195 8th line, utopia, ON, L0M 1T0 705–424-1479 http://www.nvca.on.ca. Accessed 15/06/2017

  • Noshadi M, Sepaskhah AR (2005) Application of geostatistics for potential evapotranspiration estimation. Iran J Sci Technol Trans B 29(B3):343–355

    Google Scholar 

  • Panchal G, Ganatra A, Kosta YP, Panchal D (2011) Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. Int J Comput Theor Eng 3:332–337

    Article  Google Scholar 

  • Pasini A (2015) Artificial neural networks for small dataset analysis. J Thorac Dis 7:953–960

    Google Scholar 

  • Ponce BJ, Vidal S (2011) Krige method application for the coverage analysis of a node-B in a WCDMA network. Int J Commun, Network and System Sciences 4(3):180–188

    Google Scholar 

  • Saltelli A, Chan K, Scott EM (2000) Sensitivity Analysis. John Wiley & Sons, Chichester, UK

    Google Scholar 

  • Sarani N, Soltani J, Sarani S, Moasheri A (2012) Comparison of artificial neural network and multivariate linear regression model to predict sodium adsorption ratio (SAR) (case study: Sistan River, Iran). Int J Biol Ecol Environ Sci (IJBEES) 1(2):29–34

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Webster R. and M. A. Oliver, 2007. Geostatistics for environmental scientists (2nded.). Statistics in practice.Chichester: John Wiley & Sons, Ltd.

  • Yan Q, Ma C, Song Y, Zhou W (2016) Wavelet and ANFIS Combination Model for Groundwater level Forecasting. Rev Téc IngUniv Zulia 39(2):317–328

    Google Scholar 

  • Zhou Y, H.M.P.S.D. Herath (2017) Evaluation of alternative conceptual models for groundwater modeling. Geosci Front 8:437–443. https://doi.org/10.1016/j.gsf.2016.02.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belgacem Agoubi.

Additional information

Editorial handling: Antonio Pulido-Bosch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agoubi, B., Kharroubi, A. Groundwater depth monitoring and short-term prediction: applied to El Hamma aquifer system, southeastern Tunisia. Arab J Geosci 12, 324 (2019). https://doi.org/10.1007/s12517-019-4490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4490-1

Keywords

Navigation