Advertisement

Upper Campanian-Maastrichtian calcareous nannoplankton biostratigraphy and paleoecology in Wadi Qena, Eastern Desert, Egypt

  • Abdel Galil A. Hewaidy
  • Madhat M. M. Mandur
  • Sherif Farouk
  • Ibrahim S. El AgroudyEmail author
S. I. Geology of Africa
  • 116 Downloads
Part of the following topical collections:
  1. New Advances and Research Results on the Geology of Africa

Abstract

The Upper Campanian/Maastrichtian calcareous nannofossils from the Hawashiya and Umm Omeiyied exposed sections at Wadi Qena, have been examined. The studied interval is represented by the Sudr Formation. This formation rests uncomfortably on the Upper Campanian Rakhiyat Formation and is uncomfortably underlain by the Paleocene Dakhla Formation. The studied calcareous nannofossils assemblage is highly diverse and comprises mostly of well-preserved specimens. The assemblages include abundant Watznaueria spp., Arkhangelskiella spp., and Micula spp., in addition to many other taxa. Both studied sections are divided into seven calcareous nannofossils biozones that cover the Upper Campanian-Maastrichtian interval, respectively, the biozones from older to younger: (UC15e/CC22, UC16/CC23a, UC17/CC23b, UC18/CC24, UC19/CC25a, UC20a /CC25b, and UC20b/CC25c) biozones. The paleoecological analysis of calcareous nannofossils in the studied interval depended on a set of statistical indices like the total number of nannofossils, abundance, diversity, fertility, and productivity of the calcareous nannofossils. In addition, some species of calcareous nannofossils are selected to determine cycles of temperature fluctuations in the water surface that ranged between cold and warm. The paleoenvironmental analysis emphasizes the significance of some indicator nannofossil taxa in the reconstruction of the productivity model in the Tethyan Realm, during the Upper Cretaceous times.

Keywords

Upper Cretaceous Calcareous nannofossils Paleoecology Wadi Qena Eastern Desert 

Notes

Acknowledgments

We would like to thank two anonymous reviewers and Editor for their suggestions and help in improving our working paper.

References

  1. Arkhangelsky A. (1912) Upper Cretaceous deposits of East European Russia. Mater. Geol. Russ, 25, 1-631Google Scholar
  2. Barrera E, Savin SM, Thomas E, Jones CE (1997) Evidence for thermohaline-circulation reversals controlled by sea-level change in the latest Cretaceous. Geology 25(8):715–718CrossRefGoogle Scholar
  3. Baudin F, Tribovillard N, Laggoun-Défarge F, Lichtfouse E, Monod O, Gardin S (1999) Depositional environment of a Kimmeridgian carbonate ‘black band’ (Akkuyu Formation, south western Turkey). Sedimentology 46(4):589–602CrossRefGoogle Scholar
  4. Beavington-Penney SJ, Wrigth VP, Racey A (2006) The Middle Eocene Seeb Formation of Oman: an investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. J Sediment Res 76:1137–1161CrossRefGoogle Scholar
  5. Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modem ocean:its geochemical and environmental significance. Am J Sci (United States) 282:451–473CrossRefGoogle Scholar
  6. Black M. (1971) Coccoliths of the Speeton clay and Sutterby marl. Proceedings of the Yorkshire Geological Society, 38(3), 381-424CrossRefGoogle Scholar
  7. Black M. & Barnes B. (1959) The structure of coccoliths from the English Chalk. Geological Magazine, 96(5), 321-328Google Scholar
  8. Bown P (1998) Calcareous nannofossil biostratigraphy. Chapman and Hall/Kluwer Academic, pp 1–315Google Scholar
  9. Bramlette M. & Martini E. (1964) The great change in calcareous nannoplankton fossils between the Maastrichtian and Danian. Micropaleontology,10(3), 291-322Google Scholar
  10. Brand LE (2006) Physiological ecology of marine coccolithophores. In: Winter A, Siesser W (eds) Coccolithophores. Cambridge University Press, Cambridge, UK, pp 39–49Google Scholar
  11. Bukry D (1973) Low latitude coccolith biostratigraphic zonation. Initial Rep Deep Sea Drill Proj 15:685–703Google Scholar
  12. Bukry D. (1969) Upper Cretaceous coccoliths from Texas and Europe. The University of Kansas Paleontological Contributions, Article 51 (Protista 2): 1-79Google Scholar
  13. Bukry D, Bramlette M (1970) Coccolith age determinations Leg 3, deep sea drilling project. Initial Rep Deep Sea Drill Proj 3:589–611Google Scholar
  14. Burnett J. (1997) ‘Middle’Cretaceous morphological diversity within the genus Ceratolithina Martini, 1967. Journal of Nannoplankton Research, 19, 57-65.Google Scholar
  15. Burnett J (1998) Upper Cretaceous. In: Brown PR (ed) Calcareous nannofossil biostratigraphy. Kluwer Academic Publishing, pp 132–199Google Scholar
  16. Cepek P, Hay WW (1969) Calcareous nannoplankton and biostratigraphic subdivision of the Upper Cretaceous, pp 323–336Google Scholar
  17. Conoco C. (1987) Geological Map of Egypt, Scale 1: 500,000,-NH36SW-Beni Suef, Egypt. The Egyptian General Petroleum Corporation, Cairo (EGPC), Egypt.Google Scholar
  18. Deflandre G. (1959) Sur les nannofossiles calcaires et leur systématique. Revue de micropaléontologie, 2, 127-152Google Scholar
  19. Deflandre G. & Fert C. (1954). Observations sur les coccolithophoridés actuels et fossiles en microscopie ordinaire et électronique: Masson. Annales de Paléontologie, 40; 115-176Google Scholar
  20. Demaison G, Moore GT (1980) Anoxic environments and oil source bed genesis. Am Assoc Pet Geol Bull 64:1179–1209Google Scholar
  21. Ducassou E, Mulder T, Migeon S, Gonthier E, Murat A, Revel M, Capotondi L, Bernasconi SM, Mascle J, Zaragosi S (2008) Nile floods recorded in deep mediterranean sediments. Quaternary Research 70:382–391CrossRefGoogle Scholar
  22. Erba E (1992a) Calcareous nannofossil distribution in pelagic rhythmic sediments (Aptian-Albian Piobbico core, Central Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) 97(3–4):455–484Google Scholar
  23. Erba E (1992b) Middle Cretaceous calcareous nannofossils from the western Pacific (Leg 129): evidence for paleoequatorial crossings. Paper presented at the Proceedings of the Ocean Drilling Program. Sci Res 129:189–201Google Scholar
  24. Erba E, Castradori D, Guasti G, Ripepe M (1992) Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Paleogeogr, Paleoclimato, Paleoecol 93(1–2):47–69CrossRefGoogle Scholar
  25. Eshet Y, Almogi-Labin A (1996) Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. Mar Micropaleontol 29(1):37–61CrossRefGoogle Scholar
  26. Eshet Y, Moshkovitz S, Habib D, Benjamini C, Magaritz M (1992) Calcareous nannofossil and dinoflagellate stratigraphy across the Cretaceous/Tertiary boundary at Hor Hahar, Israel. Mar Micropaleontol 18(3):199–228CrossRefGoogle Scholar
  27. Faris M., El-Deeb W. & Mandour M. (2000) Biostratigraphy of some Upper Cretaceous/Lower Eocene successions in North and Southwest Sinai, Egypt. Annual Report Geol Surv, Egypt, 23, 135–161Google Scholar
  28. Fisher CG, Hay WW (1999) Calcareous nannofossils as indicators of Mid-Cretaceous paleofertility along an ocean front, US Western interior. Special papers-geological society of America:161–180Google Scholar
  29. Friedrich O, Herrle JO, Hemleben C (2005) Climatic changes in the Late Campanian—Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. J Foraminifer Res 35(3):228–247CrossRefGoogle Scholar
  30. Friedrich O, Herrle JO, Wilson PA, Cooper MJ, Erbacher J, Hemleben C (2009) Early Maastrichtian carbon cycle perturbation and cooling event: implications from the South Atlantic Ocean. Paleoceanography 24(2):228–247CrossRefGoogle Scholar
  31. Gardet M. (1955) Contribution à l'étude des coccolithes des terrains néogènes de l'Algérie. Publications du Service de la Carte Géologique de l'Algérie (Nouvelle Série), 5: 477-550Google Scholar
  32. Gardin S, Monechi S (2001) Chapter C3c calcareous nannofossil distribution in the tercis geological site (Landes, SW France) around the Campanian-Maastrichtian boundary. In: Developments in Paleontology and Stratigraphy, vol 19, pp 272–284Google Scholar
  33. Gartner S. (1968) Coccoliths and related calcareous nannofossils from Upper Cretaceous deposits of Texas and Arkansas. The University of Kansas Paleontological Contributions, Article 48 (Protista 1): p. 41; pl. 7, figs. 10 a-d, 11.Google Scholar
  34. Geisen M, Bollmann J, Herrle JO, Mutterlose J, Young JR (1999) Calibration of the random settling technique for calculation of absolute abundances of calcareous nannoplankton. Micropaleontology 45(4):437–442CrossRefGoogle Scholar
  35. Ghorab M (1961) Abnormal stratigraphic features in Ras Gharib oilfield. In: Proceedings of the 3rd Arabian Petroleum Congress, Dar El-Kitab, pp 1–10Google Scholar
  36. Górka H. (1957) Coccolithophoridae z górnego mastrychtu Polski środkowej. Acta Palaeontologica Polonica, 2, (2-3)Google Scholar
  37. Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2(5):457–471CrossRefGoogle Scholar
  38. Hattner JG. Wind FH. Wise SW., (1980). Upper Cretaceous calcareous nannofossil biostratigraphy of South Carolina. South Carolina Geology, 24 (2), p. 23; pl. 2, figs. 1-3, 5-8Google Scholar
  39. Herrle J, Pross J, Friedrich O, Hemleben C (2003) Short-term environmental changes in the Cretaceous Tethyan Ocean: micropaleontological evidence from the Early Albian Oceanic Anoxic Event 1b. Terra Nova 15(1):14–19CrossRefGoogle Scholar
  40. Hewaidy AGA, Farouk S, Mandur MM, El Agroudy IS (2019) Planktonic foraminiferal and paleoenvironments of the upper Campanian-Maastrichtian succession in Wadi Qena, Egypt. Egypt J Pet 28(1):47–59CrossRefGoogle Scholar
  41. Huber BT, Watkins DK (1992) Biogeography of Campanian-Maastrichtian calcareous plankton in the region of the Southern Ocean: Paleogeographic and Paleoclimatic implications. The Antarctic Paleoenvironment: a perspective on global change: part one:31–60CrossRefGoogle Scholar
  42. Khalifa MA, El-Ghar MSA, Helal SA, Hussein AW (2014) Sequence stratigraphy of the Cenomanian Galala Formation, north Eastern Desert, Egypt. J Afr Earth Sci 89:133–148CrossRefGoogle Scholar
  43. Lees JA (2002) Calcareous nannofossil biogeography illustrates paleoclimate change in the Late Cretaceous Indian Ocean. Cretac Res 23(5):537–634CrossRefGoogle Scholar
  44. Lees JA. & Bown PR. (2005) Upper Cretaceous calcareous nannofossil biostratigraphy OPD Leg 198 (Shatsky Rise, northwest Pacific Ocean). Paper presented at the Proceedings of the Ocean Drilling Program: Scientific Results. 198, 1–60Google Scholar
  45. Lees JA, Bown PR, Mattioli E (2005) Problems with proxies? Cautionary tales of calcareous nannofossil paleoenvironmental indicators. Micropaleontology 51(4):333–343CrossRefGoogle Scholar
  46. Li L, Keller G (1998) Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Mar Micropaleontol 33(1/2):55–86CrossRefGoogle Scholar
  47. Li L, Keller G, Stinnesbeck W (1999) The Late Campanian and Maastrichtian in northwestern Tunisia: paleoenvironmental inferences from lithology, macrofauna and benthic foraminifera. Cretac Res 20(2):231–252CrossRefGoogle Scholar
  48. Linnert C, Mutterlose J (2009) Evidence of increasing surface water oligotrophy during the Campanian-Maastrichtian boundary interval: calcareous nannofossils from DSDP hole 390A (Blake nose). Mar Micropaleontol 73(1–2):26–36CrossRefGoogle Scholar
  49. Linnert C, Mutterlose J (2013) Biometry of Cenomanian-Turonian placoliths: a proxy for changes of fertility and surface-water temperature? LET Lethaia 46(1):82–97CrossRefGoogle Scholar
  50. Linnert C, Mutterlose J, Erbacher J (2010) Calcareous nannofossils of the Cenomanian/Turonian boundary interval from the boreal realm (Wunstorf, Northwest Germany). Mar Micropaleontol 74(1):38–58CrossRefGoogle Scholar
  51. Mahanipour A, Najafpour A (2016) Calcareous nannofossil assemblages of the Late Campanian-Early Maastrichtian form Gurpi Formation (Dezful embayment, SW Iran): evidence of a climate cooling event. Geopersia 6(1):129–148Google Scholar
  52. Mahsoub M, Abulnasr R, Boukhary M, Faris M, Abd El Aal M (2012) Bio-and sequence stratigraphy of Upper Cretaceous–Paleogene rocks, East Bahariya concession, Western Desert, Egypt. Geologia Croatica 65(2):109–138CrossRefGoogle Scholar
  53. Makled WA, Mandur MM (2016) Nannoplankton calendar: applications of nannoplankton biochronology in sequence stratigraphy and basin analysis in the subsurface offshore Nile Delta, Egypt. Mar Pet Geol 72:374–392CrossRefGoogle Scholar
  54. Mandur MM, Baioumi A (2009) Stratigraphical and paleoecological studies on Upper Cretaceous succession of Gs 160-2 well, Gulf of Suez, Egypt. J Appl Sci Res 5:2247–2261Google Scholar
  55. Mandur MM (2011) Lithostratigraphy and biostratigraphy of the Upper Cretaceous succession of southeastern Sinai, Egypt. Egypt J Pet 20(2):89–96CrossRefGoogle Scholar
  56. Mandur MM (2016) Late Cretaceous calcareous nannofossil biostratigraphy and paleoecology in the Northwestern Desert, Egypt. Arab J Sci Eng 41(6):2271–2284CrossRefGoogle Scholar
  57. Mandur M, Baioumi A (2010) Calcareous nannofossil of the Upper Cretaceous/Lower Eocene succession in the southwestern Sinai area, Egypt. International Journal of Earth Sciences 1:28–37Google Scholar
  58. Mandur MM, El Ashwah AA (2015) Calcareous nannofossil biostratigraphy and paleoecology of the Maastrichtian in the western coast of the Gulf of Suez, Egypt. Arab J Geosci 8(5):2537–2550CrossRefGoogle Scholar
  59. Manivit H. (1965) Nannofossiles calcaires de L'Albo-Aptien. Revue de Micropaleontologie, 8: 189-201Google Scholar
  60. Martini E. & Stradner H. (1960) Nannotetraster, eine stratigraphisch bedeutsame neue Discoasteridengattung. Erdoel-Zeitschrift, 76(8): 266-270Google Scholar
  61. Martini E. (1961) Nannoplankton aus dem Tertiär und der obersten Kreide von SW-Frankreich: E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller). Lethaia, 42 (1/2), 1-32Google Scholar
  62. Martini E, Worsley T (1970) Standard Neogene calcareous nannoplankton zonation. Nature 225(5229):289–290CrossRefGoogle Scholar
  63. Matter A, Douglas RG, Perch-Nielsen K (1975) Fossil preservation, geochemistry and diagenesis of pelagic carbonates from Shatsky rise, Northwest Pacific. Initial Rep Deep Sea Drill Proj 32:891–921Google Scholar
  64. Melinte M, Odin GS (2001) Chapter C3d optical study of the calcareous nannofossils from Tercis les Bains (Landes, France) across the Campanian-Maastrichtian boundary. In: Developments in paleontology and stratigraphy, vol 19, pp 285–292Google Scholar
  65. Mutterlose J (1992) Biostratigraphy and paleobiogeography of Early Cretaceous calcareous nannofossils. Cretac Res 13(2):167–189CrossRefGoogle Scholar
  66. Mutterlose J, Kessels K (2000) Early Cretaceous calcareous nannofossils from high latitudes: implications for paleobiogeography and paleoclimate. Paleogeography, Paleoclimatology, Paleoecology 160(3–4):347–372CrossRefGoogle Scholar
  67. Noël D. (1959). Étude de coccolithes du Jurassique et du Crétacé inférieur. Publications du Service de la Carte Géologique de l'Algérie (Nouvelle Série) Bulletin, 20: 155-196Google Scholar
  68. Odin GS, Lamaurelle MA (2001) The global Campanian/Maastrichtian stage boundary. Episodes 24:229–238Google Scholar
  69. Paul CRC, Lamolda MA, Mitchell SF, Vaziri MR, Gorostidi A, Marshall JD (1999) The Cenomanian/Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeogr Palaeoclimatol Palaeoecol 150:83–121CrossRefGoogle Scholar
  70. Perch-Nielsen K. (1986) New Mesozoic and Paleogene calcareous nannofossils. Eclogae Geologicae Helvetiae, 79(3): 835-847Google Scholar
  71. Perch-Nielsen k. (1973) Danian and Campanian/Maastrichtian coccoliths from Nttgssuaq, west Greenland. Bulletin of the Geological Society of Denmark, 22(1), 79-82Google Scholar
  72. Perch-Nielsen K (1979) Calcareous nannofossil zonation at the Cretaceous/Tertiary boundary in Denmark. Cretaceous–Tertiary Boundary Events. In: I. The Maastrichtian and Danian of Denmark, pp 115–135Google Scholar
  73. Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Plankton stratigraphy, pp 330–331Google Scholar
  74. Perch-Nielsen, K., Bromley, R.G., Birkenmajer, K. & Aellen, M., (1972). Field observations in Palaeozoic and Mesozoic sediments of Scoresby Land and northern Jameson Land. Danmarks Og Grønlands Geologiske Undersøgelse, rapport, (48), 39–59Google Scholar
  75. Pospichal JJ (1996) Calcareous nannoplankton mass extinction at the Cretaceous/Tertiary boundary: an update. The Cretaceous–Tertiary event and other catastrophes in earth history, vol 307. Geological Society of America Special Paper, pp 335–360Google Scholar
  76. Pospichal JJ, Wise SW Jr (1990) Calcareous nannofossils across the K/T boundary, ODP hole 690C, Maud Rise, Weddell Sea. In: Barker PF, Kennett JP et al (eds) Proc. Ocean Drilling Program, Scientific Results, vol 113, pp 515–532Google Scholar
  77. Reinhardt P. (1964) Einige Kalkflagellaten-Gattungen (Coccolithophoriden, Coccolithineen) aus dem Mesozoikum Deutschlands. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 6: 749-759Google Scholar
  78. Reinhardt P. (1965) Neue Familien für fossile Kalkflagellaten (Coccolithophoriden, Coccolithineen). Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 7: 30-40Google Scholar
  79. Risatti, JB. (1973) Nannoplankton biostratigraphy of the Upper Bluffport Marl-Lower Prairie Bluff Chalk interval (Upper Cretaceous) in Mississippi. In: Smith, L.A. and Hardenbol, J. (Editors), Proceedings of the Symposium on Calcareous Nannofossils. Gulf Coast Section SEPM Publication,57(9), p. 30; pl. 8, figs. 8-9Google Scholar
  80. Roth PH (1972) Calcareous nannoplankton: Leg 14 of the deep sea drilling project. Initial Rep Deep Sea Drill Proj 14:421–485Google Scholar
  81. Roth PH (1978) Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean. Initial Rep Deep Sea Drill Proj 44:731–759Google Scholar
  82. Roth PH, Berger WH (1975) Distribution and dissolution of coccoliths in the south and Central Pacific. Dissol Deep-Sea Carbonates 13:87–113Google Scholar
  83. Roth PH, Bowdler JL (1981) Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. In: Society of Economic Paleontologists and Mineralogists, pp 517–546Google Scholar
  84. Roth PH, Krumbach KR (1986) Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian oceans: implications for paleoceanography. Mar Micropaleontol 10(1–3):235–266CrossRefGoogle Scholar
  85. Schlanger SO, Douglas RG, Lancelot Y, Moore TC, Roth PH (1973) Fossil preservation and diagenesis of pelagic carbonates from the Magellan Rise, central North Pacific Ocean. Initial Rep Deep Sea Drill Proj 17:407–427Google Scholar
  86. Senemari S, Usefi MSM (2013) Evaluation of Cretaceous–Paleogene boundary based on calcareous nannofossils in section of Pol Dokhtar, Lorestan, southwestern Iran. Arab J Geosci 6(10):3615–3621CrossRefGoogle Scholar
  87. Shafik S. (1990) Late Cretaceous nannofossil biostratigraphy and biogeography of the Australian western margin: Australian Government Publishing Service. 295, 1-172Google Scholar
  88. Silvá IP, Erba E, Tornaghi ME (1989) Paleoenvironmental signals and changes in surface fertilityin Mid Cretaceous Corg-rich pelagic facies of the fucoid marls (Central Italy). Geobios 22:225–236CrossRefGoogle Scholar
  89. Sissingh W (1977) Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbou 56(1):37–65Google Scholar
  90. Stradner H. & Papp A. (1961) Tertiäre Discoasteriden aus Österreich und deren stratigraphische Bedeutung mit Hinweisen auf Mexico, Rumanien und Italien. Jahrbuch der Geologischen Bundesanstalt (Wien); Special Volume, 7: 1-159Google Scholar
  91. Stradner H. & Steinmetz J. (1984) Cretaceous calcareous nannofossils from the Angola Basin, Deep Sea Drilling Project Site 530. Initial Reports of the Deep Sea Drilling Project, 75: p. 595; pl. 31, figs. 3, 5, 6Google Scholar
  92. Stover LE. (1966) Cretaceous coccoliths and associated nannofossils from France and the Netherlands. Micropaleontology, 12, 133-167CrossRefGoogle Scholar
  93. Tantawy AAA (2003) Calcareous nannofossil biostratigraphy and paleoecology of the Cretaceous–Tertiary transition in the central eastern desert of Egypt. Mar Micropaleontol 47(3–4):323–356CrossRefGoogle Scholar
  94. Thibault N, Gardin S (2006) Maastrichtian calcareous nannofossil biostratigraphy and paleoecology in the equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Rev Micropaleontol 49(4):199–214CrossRefGoogle Scholar
  95. Thibault N, Gardin S (2007) The Late Maastrichtian nannofossil record of climate change in the South Atlantic DSDP Hole 525A. Mar Micropaleontol 65(3):163–184CrossRefGoogle Scholar
  96. Thibault N, Gardin S (2010) The calcareous nannofossil response to the End-Cretaceous warm event in the Tropical Pacific. Paleogeograp, Paleoclimatol, Paleoecol 291(3):239–252CrossRefGoogle Scholar
  97. Thibault N, Harlou R, Schovsbo N, Schiøler P, Minoletti F, Galbrun B, Lauridsen BW, Sheldon E, Stemmerik L, Surlyk F (2012) Upper Campanian–Maastrichtian nannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of the Danish Basin: towards a standard δ 13C curve for the Boreal Realm. Cretac Res 33:72–90CrossRefGoogle Scholar
  98. Thierstein HR (1976) Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Mar Micropaleontol 1:325–362CrossRefGoogle Scholar
  99. Thierstein HR (1980) Selective dissolution of Late Cretaceous and Earliest Tertiary calcareous nannofossils: experimental evidence. Cretac Res 1(2):165–176CrossRefGoogle Scholar
  100. Thierstein HR (1981) Late Cretaceous nannoplankton and the change at the Cretaceous Tertiary Boundary. In: Society of Economic Paleontologists and Mineralogists, pp 355–394Google Scholar
  101. Thomsen E (1989) Seasonal variability in the production of Lower Cretaceous calcareous nannoplankton. Geology 17(8):715–717CrossRefGoogle Scholar
  102. Tyson RV (1995) Sedimentary organic matter: organic facies and palynofacies. Chapman and Hall, London, p 615CrossRefGoogle Scholar
  103. Vekshina V. (1959) Coccolithophoridae of the Maastrichtian deposits of the West Siberian lowlands. Siberian Science Research Institute of 10.1007/s12517-019-4485-y Geology, Geophysics, Mineralogy and Raw Materials, 2, 56-81.Google Scholar
  104. Varol O. (1991) New Cretaceous and Tertiary calcareous nannofossils. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 182, 211-237CrossRefGoogle Scholar
  105. Watkins DK (1989) Nannoplankton productivity fluctuations and rhythmically-bedded pelagic carbonates of the Greenhorn Limestone (Upper Cretaceous). Paleogeograp, Paleoclimatol, Paleoecol 74(1–2):75–86CrossRefGoogle Scholar
  106. Watkins DK (1992) Upper cretaceous nannofossils from Leg 120, Kerguelen plateau, southern ocean. In: Proceedings of the ocean drilling program, scientific results, vol 120, pp 343–370Google Scholar
  107. Watkins DK, Self Trail JM (2005) Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian. Paleoceanography 20(3) PA3006 (1-9)CrossRefGoogle Scholar
  108. Watkins DK, Wise SW Jr, Pospichal JJ, Crux J (1996) Upper Cretaceous calcareous nannofossil biostratigraphy and paleoceanography of the Southern Ocean. In: Moguilevsky A, Whatley R (eds) Microfossils and oceanic environments, pp 355–381Google Scholar
  109. Williams JR, Bralower TJ (1995) Nannofossil assemblages, fine fraction stable isotopes, and the paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography 10(4):815–839CrossRefGoogle Scholar
  110. Wise S. & Watkins DK. (1983) Calcareous nannofossils from Cape Roberts Project drillhole CRP-3 Victoria Land Basin, Antarctica. Terra Antartica, 8(4), 339-346Google Scholar
  111. Worsley T (1974) The Cretaceous-Tertiary boundary event in the ocean, pp 94–114Google Scholar
  112. Young JR (1994) Functions of coccoliths. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, pp 63–82Google Scholar
  113. Young JR, Bown PR (1991) An ontogenic sequence of coccoliths from the Late Jurassic Kimmeridge Clay of England. Paleontology 34:843–850Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Geology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Exploration DepartmentEgyptian Petroleum Research InstituteCairoEgypt

Personalised recommendations