Contribution of rainfall variability to salts’ dynamics in the region of Mahdia (Tunisian Sahel)


The wide use of irrigation areas in the region of Mahdia is considered to be one of the main factors of soil salinity increase. The present study aims to evaluate the impact of extreme rainfall events on soil salinity. To fill the missing values in our rainfall dataset, we applied the artificial neural network algorithm. In addition, we used the RClimDex software to gain further insights on the number of rainy days’ variability over the period between 1960 and 2017. Moreover, to study the presence/absence of a trend in the rainfall time series, we used the modified Mann-Kendall (MM-K) test. Furthermore, to establish the current saline profiles, a drilling operation was carried out at four agricultural plots. These profiles were compared to previous ones observed in 2011. The statistical analysis of the precipitations’ time series reveals that the highest probability of extreme rainfall events is associated with the MS El Djem. The indices generated by the RClimDex software shows a slight increasing trend of days with rainfall ranging between 1 and 25 mm and a slight decreasing trend of days with rainfall ranging between 26 and 50 mm. However, the MM-K test shows an absence of any significant trend for all studied parameters. In addition, results show that the exceptional precipitations, which occurred in autumn 2016 have, indeed, leached the salts that were being retained at the soil surface layers. For instance, in the Ouled Chamekh Center plot, salinity has decreased by around 32%, between 2011 and 2017.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Allison LE, Brown JW, Hayward HE, Richards LA, Bernstein L, Fireman, Pearson GA, Wilcox LV, Bower CA, Hatcher JT, Reeve RC (1954) Diagnosis and improvement of saline and alkali soils, Handbook n°60. United States Department of Agriculture, Washington

  2. Allouche J (2011) The sustainability and resilience of global water and food systems: political analysis of the interplay between security, resource scarcity, political systems and global trade. Food Policy 36:3–8

    Article  Google Scholar 

  3. Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(10):31-1–31-4

    Google Scholar 

  4. Al-Shaybani SR (2003) Overview of non-modernized spate irrigation systems in Yemen. ​

  5. Antipolis S (2003) Les menaces sur les sols dans les pays méditerranéens (Etude bibliographique). Les Cahiers du Plan Bleu 2, p 70. ​

  6. Baú AL, Azevedo CAV, Bresolin AA (2013) Modelagem daprecipitação pluvial diária intra-anual da Bacia Hidrográfica Paraná III associada aos eventos ENOS. Revista Brasileira de Engenharia Agrícola e Ambiental 17(8):883–891.

    Article  Google Scholar 

  7. Ben Salem A, Majdoub R, M’Sadak Y, Abida H (2013) Impact des banquettes mécanisées du bassin versant Sebkhat El Kalbia sur la qualité chimique du sol. The 5th Tunisian Days of Applied. Geology:35–40

  8. Bewket W, Conway D (2007) A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. Int J Climatol 27:1467–1477

    Article  Google Scholar 

  9. Boufaroua M (2004) Evolution des techniques de conservation des eaux et des sols en Tunisie. ​Bulletin du réseau érosion 22:625–635

  10. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control, 5th edn. John Wiley & Sons Inc.​, Hoboken

  11. Brunetti M, Buffoni L, Mangianti F, Maugeri M, Nanni T (2004) Temperature, precipitation and extreme events during the last century in Italy. Glob Planet Chang 40:141–149

    Article  Google Scholar 

  12. CEAEQ (Centre d’Expertise en Analyse Environnementale du Québec) (2010) Détermination de la conductivité : Méthode électrométrique, MA. 115 – Cond. 1.0. Revue 4. Ministère du Développement Durable, de l’Environnement et de la lutte contre les changements climatiques, p 9. ​

  13. Chattopadhyay S, Edwards DR (2016) Long-term trend analysis of precipitation and air temperature for Kentucky, United States. Climate 4:10

    Article  Google Scholar 

  14. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M, Caesar J (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118:2098–2118

    Article  Google Scholar 

  15. Eswaran H, Reich PA (2007) Human impact on land systems of the world. Soil Horizons 48:11–15.

    Article  Google Scholar 

  16. Farahani HJ, Izzi G, Oweis TY (2009) Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron J 101(3):469–476

    Article  Google Scholar 

  17. Fausett LV (1994) Fundamentals of neural networks: architectures, algorithms, and applications, 40th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  18. Hachicha M (2007) Les sols salés et leur mise en valeur en Tunisie. Sécheresse 18(1):45–50

    Google Scholar 

  19. Hamed KH, Rao RA (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196

    Article  Google Scholar 

  20. Hatira A, Baccar L, Grira M, Gallali T (2007) Analyse de sensibilité du système oasien et mesures de sauvegarde de l’oasis de Métouia (Tunisie). Rev Sci Eau 20(1):59–69

    Google Scholar 

  21. Hillel D (2000) Salinity Management for Sustainable Irrigation: Integrating Science, Environment and Economics. World Bank, 102p

  22. Huangyuan W, Xiaotang J, Yongping W, Baoguo L, Lulu Z, Kelin H (2010) Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain. Agric Water Manag 97(10):1646–1654

    Article  Google Scholar 

  23. Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  24. Kevane M, Gray L (2008) Darfur: rainfall and conflict. Environ Res Lett 3(034006):10.

    Article  Google Scholar 

  25. Kim JW, Pachespsky YA (2010) Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. J Hydrol 394:305–314

    Article  Google Scholar 

  26. Kostopoulou E, Jones PD (2005) Assessment of climate extremes in the Eastern Mediterranean. Meteorog Atmos Phys 89:69–85

    Article  Google Scholar 

  27. Lahlou M, Badraoui M, Soudi B, Goumari A, Tessier D (2003) Modélisation de l’impact de l’irrigation sur le devenir salin et sodique des sols. In: Marlet S, Ruelle P (eds) Actes de l’atelier du PCSI (Programme Commun Systèmes Irrigués) sur une Maîtrise des Impacts Environnementaux de l’Irrigation, 28-29 mai 2002, Montpellier, France, p 19

  28. Lipper L, Osgood D (2001) Two essays on socio-economic aspects of soil degradation. FAO economic and social development paper n°149, Rome.

  29. Louati D, Majdoub R, Rigane H, Abida H (2018) Effects of irrigating with saline water on soil salinization. Arab J Sci Eng.

  30. Majdoub R, Hachicha M, El Amri A, Melki M (2012) Etude de la dynamique de l’eau et du transfert des sels dans un sol sablo-limoneux du Sahel Tunisien. Eur J Sci Res 80:499–507

    Google Scholar 

  31. Malik SJ, Nazli H (1998) Rural poverty and land degradation: a review of the current state of knowledge. Pak Dev Rev 37:1053–1070

    Article  Google Scholar 

  32. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  33. Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  Google Scholar 

  34. Nosetto MD, Jobbagy EG, Brizuela AB, Jack-son RB (2012) The hydrologic consequences of land cover change in central Argentina. Agric Ecosyst Environ 154:2–11

    Article  Google Scholar 

  35. Oweis TY, Farahani HJ, Hachum AY (2011) Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria. Agric Water Manag 98(8):1239–1248

    Article  Google Scholar 

  36. Raymond F, Ullmann A, Camberlin P (2016) Précipitations intenses sur le Bassin Méditerranéen : quelles tendances entre 1950 et 2013 ? Cybergeo: European Journal of Geography [En ligne], Environnement, Nature, Paysage.

  37. Salvati L, Zitti M, Ceccarelli T (2008) Integrating economic and environmental indicators in the assessment of desertification risk: a case study. Appl Ecol Environ Res 6:129–138

    Article  Google Scholar 

  38. Singh D, Jain SK, Gupta RD, Kumar S, Rai SP, Jain N (2016) Analyses of observed and anticipated changes in extreme climate events in the Northwest Himalaya. Climate 4:9

    Article  Google Scholar 

  39. Sivanandam SN, Deepa SN (2007) Principles of soft computing. Wiley India (P) Ltd., New Delhi

    Google Scholar 

  40. Tanji K (1990) Agricultural salinity assessment and management. Manuals and Reports on Engineering Practice n°71, 2nd edn. American Society of Civil Engineers, New York, p 619

  41. Tank AMGK, Konnen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946-99. J Clim 16:3665–3680

    Article  Google Scholar 

  42. Tank AMGK, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Climate Data Monitoring WCDMP n°72. World Meteorological Organization, Geneva, p 55

  43. Toreti A, Xoplaki E, Maraun D, Kuglitsch FG, Wanner H, Luterbacher J (2010) Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazards Earth Syst Sci 10:1037–1050

    Article  Google Scholar 

  44. Turral H, Burke J, Faurès JM (2011) Climate change, water and food security. FAO Water Reports n°36. FAO, Rome

  45. World Water Assessment Programme (2009) The United Nations World Water Development Report 3: Water in a changing world. UNESCO, Paris and Earthscan, London

Download references


This research was realized jointly between the research unit: Sustainable Management of Water and Soil Resources (UR17AGR03) and the research laboratory: Management and control of animal and environmental resources in semi-arid regions. A part of this research study was accomplished during the master thesis of Mr. Farhat at ESIM. The authors would like to thank the Tunisian General Directorate of Water Resources (DGRE) for providing the conventional data for the study area. Finally, the authors would like to express their gratitude for the anonymous reviewers of this paper.

Author information



Corresponding author

Correspondence to Lokmen Farhat.

Additional information

Editorial handling: Maurizio Barbieri

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farhat, L., El Amri, A., Khlifi, S. et al. Contribution of rainfall variability to salts’ dynamics in the region of Mahdia (Tunisian Sahel). Arab J Geosci 12, 123 (2019).

Download citation


  • Artificial neural network
  • RClimDex indices
  • Mann-Kendall test
  • Extreme rainfall events
  • Soil salinity
  • Mahdia