Advertisement

Seasonal variation of water quality and phytoplankton dynamics and diversity in the surface water of Boukourdane Lake, Algeria

  • Siham ArabEmail author
  • Somia Hamil
  • Mohamed Abdessamad Rezzaz
  • Amin Chaffai
  • Abdeslam Arab
EMCEI 2017
  • 37 Downloads
Part of the following topical collections:
  1. Water resources and water management for environmental integration in the Euro-Mediterranean region

Abstract

A study of phytoplankton diversity and its seasonal variation was conducted by sampling water from Boukourdane Lake between February 2013 and January 2015. Fifteen physical and chemical variables were recorded, and their relationship with the density of 162 phytoplankton species was established using Canonical Correspondence Analysis, which showed that the density of phytoplankton was higher when minerals and nutrients increased. An anthropogenic impact was also most evident in structuring phytoplankton assemblages at sites close to the lake where agriculture was concentrated. The results obtained from the Margalef, Shannon–Wiener, and Equitability diversity indices indicated mediocre water quality. Determinations of the trophic state were made by examining several diverse criteria, such as transparency and the concentrations of chlorophyll a and phosphorus. Our study area was characterized as mesotrophic according to the Organisation for Economic Co-operation and Development classification.

Keywords

Phytoplankton Seasonal variation Trophic status Boukourdane Lake, Algeria 

Notes

Acknowledgments

The authors are grateful for RABAH MAZARI Nadia from the Algerian Institute of Forensics science and for Khaled BELHASNAT (for assisting with sample collection) from the National Superior School of Marine Science and Coastal Management, which contributed in the realization of this project.

References

  1. Abubacker MN, Kannan V, Sridharan VT, Chandramohan M, Rajavelu S (1996) Physico chemical and biological studies on Uyyakondan Canal water of river Cauvery. Pollut Res 15(3):257–259Google Scholar
  2. Akpan ER, Offem JO (2004) Seasonal variation in water quality of the Cross river, Nigeria. Rev d’Hydrobiol Trop 26:95–103Google Scholar
  3. Arab S, Arab A (2017a) Effect of the physico-chemical parameters on the distribution of the fecal flora in a dam reservoir (Algeria). Rev Ecol (Terre Vie) 72(3):269–280 http://hdl.handle.net/2042/62314 Google Scholar
  4. Arab S, Arab A (2017b) Bioévaluation de la qualité des eaux d’un écosystème lacustre le cas du barrage de Boukourdane wilaya de TIPASA. Dissertation, University of science and technologie Houari BoumedienGoogle Scholar
  5. Atanle K, Bawa LM, Kokou K, Djaneye-boundjou G, Edorh MT (2013) Distribution saisonnière du phytoplancton en fonction des caractéristiques physico-chimiques du lac de Zowla. J Appl Biosci 64:4847–4857.  https://doi.org/10.4314/jab.v64i1.88474 CrossRefGoogle Scholar
  6. Atici T, Alas A (2012) A study on the trophic status and phytoplanktonic algae of Mamasin Dam Lake (Aksara Turkey). Turk J Fish Aquat Sci 12:595–601.  https://doi.org/10.4194/1303-2712-v12_3_06 CrossRefGoogle Scholar
  7. Baudrimont R (1973) Recherche sur les diatomées des eaux continentales de l’Algérie, écologie et paléoécologie. Dissertation, University of Bordeaux.Google Scholar
  8. Beaver JR, Kirsch JE, Tausz CE, Samples EE, Renicker TR, Scotese KC, McMaster HA, Blasius-Wert BJ, Zimba PV, Casamatta DA (2018) Long-term trends in seasonal plankton dynamics in Lake Mead (Nevada-Arizona, USA) and implications for climate change. Hydrobiologia 822:85–109.  https://doi.org/10.1007/s10750-018-3638-4 CrossRefGoogle Scholar
  9. Berrada DF, Berrada R, Benzekri A (1999) Dynamique du phytoplancton en relation avec certains paramètres physico-chimiques dans la retenue El Kansera (Maroc). Ann Limnol Int J Lim 35(3):155–166.  https://doi.org/10.1051/limn/1999022 CrossRefGoogle Scholar
  10. Bhatt JP, Jain A, Bhaskar A, Pandit MK (2001) Pre-impoundment study of biotic communities of Kistobazar Nala in Purulia (West Bengal). Curr Sci 81:10Google Scholar
  11. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369.  https://doi.org/10.4319/lo.1977.22.2.0361 CrossRefGoogle Scholar
  12. Chaïb N, Alfarhan AH, Al-rasheid KAS, Samraoui B (2011) Environmental determinants of diatoms assemblages along a North African wadi, the Kebir-East, North-East Algeria. Int J Limnol 70:33–40.  https://doi.org/10.4081/jlimnol.2011.33 CrossRefGoogle Scholar
  13. Cottingharn KL (1999) Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure. Limnol Oceanogr 44(8):10–827Google Scholar
  14. Cvetkoska A, Pavlov A, Jovanovska E, Tofilovska S, Blanco S, Ector L, Wagner-Cremer F, Levkov Z (2018) Spatial patterns of diatom diversity and community structure in ancient Lake Ohrid. Hydrobiologia 819:197–215.  https://doi.org/10.1007/s10750-018-3637-5 CrossRefGoogle Scholar
  15. Djabri L (1996) Mécanismes de la pollution et vulnérabilité des eaux de la Seybouse. Origines géologiques, industrielles, agricoles et urbaines. Dissertation, University of AnnabaGoogle Scholar
  16. El Ghachtoul Y, Alaoui mhamidi M, Gabi H (2005) Eutrophisation des eaux des retenues des barrages Smir et Sehla (maroc): causes, conséquences et consignes de gestion. Rev Sci Eau 18:75–89.  https://doi.org/10.7202/705577ar CrossRefGoogle Scholar
  17. El Haouati H, Arab A, Tudesque L, Lek S, Samraoui B (2015) Study of the diatoms of Reghaia lake, northern Algeria. Rev Ecol (Terre Vie) 70:44–75 http://hdl.handle.net/2042/56309 Google Scholar
  18. El Houati H (2015) Adaptation d’un indice phytoplanctonique pour l’évaluation de la qualité des eaux des écosystèmes lacustres Algériens. Dissertation, University of science and technologie Houari BoumedienGoogle Scholar
  19. El Ouali Lalami A, Merzouki M, El Hillali O, Maniar S, Ibnsouda koraichi S (2011) Pollution des eaux de surface de la ville de Fès au Maroc : typologie, origine et conséquences. Larhyss J 9:55–72Google Scholar
  20. Errochdi S, EL ALAMI M, Bennas N, Belqat B, Ater M, Fdil F (2012) Étude de la qualité physicochimique et microbiologique de deux réseaux hydrographiques nord marocains: Laou et Tahaddart, Méditerranée, vol 118, pp 41–51. http://journals.openedition.org/mediterranee/6221
  21. Forsberg C (1982) Limnological research can improve and reduce the cost of monitoring and control of water quality. Hydrobiologia 86:143–146.  https://doi.org/10.1007/BF00005801 CrossRefGoogle Scholar
  22. Gaikwad SR, Tarot SR, Chavan TP (2004) Diversity of Phytoplankton and zooplankton with respect to pollution status of river Tapi in north Maharastra region. J Curr Sci 5:749–754Google Scholar
  23. Ghavzan NJ, Gunale VR, Trivedy RK (2006) Limnological evaluation of an urban fresh water river with special reference to phytoplankton. PollutRes 25(2):259–268Google Scholar
  24. Ghermandi A, Van den Bergh JCJM, Brander LM, Nunes PALD (2008) The economic value of wetland conservation and creation: a meta-analysis. [Working Paper 79]. Fondazione Eni Enrico Mattei, Milan, ItalyGoogle Scholar
  25. Green J (1993) Diversity and dominance in planktonic rotifers. Hydrobiologia 255(256):345–352CrossRefGoogle Scholar
  26. Groga N (2012) Structure fonctionnement et dynamique du phytoplancton dans le lac de Taabo (Côte d'Ivoire). Dissertation, the National Institut of polytechnic of Toulouse (INP Toulouse)Google Scholar
  27. Hamaidi-Chergui F (2012) Contribution à la connaissance des peuplements planctoniques de six plans d’eau du nord de l’Algérie. Dissertation, university of science and technologie Houari BoumedienGoogle Scholar
  28. Jindal R, Vatsal P (2005) Plankton as biomonitors ofsaprobity. Aquacult 6(1):1–16Google Scholar
  29. Kagalou I, Petridis D, Tsimarakis G (2003) Seasonal variation of water quality parameters and plankton in a shallow Greek lake. J Freshw Ecol 18(2):199–206.  https://doi.org/10.1080/02705060.2003.9664485 CrossRefGoogle Scholar
  30. Kajak Z (1983) Ecological characteristics of lakes in North-Eastern Poland vs. their trophic gradient. XII. Dependence of chosen indices of structure and functioning of ecosystems of different trophic status and mictic type for 42 lakes. Ekol Pol 31:495–530Google Scholar
  31. Katsiapi M, Moustaka-Gouni M, Michaloudi KKA (2011) Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece). Environ Monit Assess 181:563–575.  https://doi.org/10.1007/s10661-010-1851-3 CrossRefGoogle Scholar
  32. LakeAccess (2006) Seeing below the surface. Three Rivers Park District, MN and University of Minnesota-Duluth, Duluth, MN 55812. http://www.lakeaccess.org/ecology/lakeecologyprim15.html. Accessed 5 May 2018
  33. Lange-Bertalot H (1979) Pollution tolerance of diatoms as a criterion of water quality estimation. Nova Hedwig Beih 64:285–304Google Scholar
  34. Loez C, Salibian A (2008) Premières données sur le phytoplancton et les caractéristiques physico chimiques du Rio Reconquista (Buenos Aires, Argentine). Rev Hydrobiol Trop 23:283–296 http://www.documentation.ird.fr/hor/fdi:34342 Google Scholar
  35. Margalef R (1958) Temporal succession and spatial heterogeneity in phytoplankton. In: Buzzati-Treverso AA (ed) Perspectives in Marine Biology, BerkeleyGoogle Scholar
  36. Martinelli L, Krushe AV, VIctoria RL, De camango PB, Benardes M, Ferraz FS, De Mareas JM, Ballester MM (1999) Effets of sewage on the chemical composition of Piracaba river Brasil. Water Air Soil Pollut 110:67–79.  https://doi.org/10.1023/A:1005052213652 CrossRefGoogle Scholar
  37. Moshood MK (2009) Phytoplankton assemblage of a small, shallow, tropical African reservoir. Rev Biol Trop 57(4):1009–1025.  https://doi.org/10.15517/rbt.v57i4.5443 CrossRefGoogle Scholar
  38. Mowe MAD, Mitrovic SM, Lim RP, Furey A, Yeo DCJ (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol 74:205–224Google Scholar
  39. O.C.D.E. (1982) Eutrophisation des eaux: méthode de surveillance, d'évaluation et de lutte. Organisation de Coopération et de Développement Economiques, ParisGoogle Scholar
  40. Ouhmidou M, Chahlaoui A, Kharroubi A, Chahboune M (2015) Etude de la qualité physico-chimique et bactériologique des eaux du barrage Hassan Addakhil d’Errachidia (Maroc). J Mater Environ Sci 6:1663–1671Google Scholar
  41. Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju, an expanding, highly adaptative cyanobacterium: worldwide distribution and review of its ecology. Algol Stud 107:563–593 http://real.mtak.hu/id/eprint/3229 Google Scholar
  42. Paturej E (2006) Assessment of the trophic state of the coastal Lake Gardno based on community structure and zooplankton-related indices. EJPAU Biol 9(2):3–14 http://www.ejpau.media.pl/volume9/issue2/art-17.html Google Scholar
  43. R Development Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Available at http://www.R-project.org
  44. Radji R, Bandje A, Issifou L, Edorh T, Kokou K (2013) Diversité et dynamique des assemblages phytoplanctoniques dans les écosystèmes aquatiques au Sud du Togo. Afr Sc 9(2):66–77Google Scholar
  45. Reynolds CS, Reynolds SN, Munawar IF, Munawar M (2000) The regulation of phytoplankton population dynamics in the world’s largest lakes. Aquat Ecosyst Health 3:1–21.  https://doi.org/10.1016/S1463-4988(99)00066-4 CrossRefGoogle Scholar
  46. Ribeiro KF, Duarte L, Crossetti LO (2018) Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 820:23–48.  https://doi.org/10.1007/s10750-018-3669-x CrossRefGoogle Scholar
  47. Rodier, J., Legube, B., Merlet, N et al (2009) l’Analyse de l’eau. 9emeEd. Dunod. Paris.Google Scholar
  48. Rogozin AG (2000) Specific structural features of zooplankton in lakes differing in trophic status: species populations. Ekol (Moscow) 31(6):438–443.  https://doi.org/10.1023/A:1026691809887 CrossRefGoogle Scholar
  49. Rolland A (2009) dynamique et diversité du phytoplancton dans le réservoir marne (bassin versant de la seine). Dissertation, University of SavoieGoogle Scholar
  50. Schembri MA, Neilan BA, Saint CP (2001) Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ Toxicol 16(5):413–421CrossRefGoogle Scholar
  51. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  52. Soininen J, Kononen K (2004) Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquat Ecol 38:63–75.  https://doi.org/10.1023/B:AECO.0000021004.06965.bd CrossRefGoogle Scholar
  53. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471Google Scholar
  54. Système d'évaluation de la qualité de l'eau (SEQ-Eau) (2014) Normes de qualité des eaux des masses d’eau naturelles. Directive cadre eau européenne MEED et agence de l’eau. Accessed 5 May 2018Google Scholar
  55. Utermöhl H (1958) ―Zur Vervollkommnung der quantitativen Phytoplankton-methodik. Mitteilungen der Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9:1–38Google Scholar
  56. Vyas LN, Kumar HD (1968) Studies on phytoplankton and other algae of Indra Sagar tank, Udaipur, India. Hydrobiologia 31:421–434.  https://doi.org/10.1007/BF00134443 CrossRefGoogle Scholar
  57. Wetzel RG (2001) Limnology: lake and river ecosystems. LondonGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Siham Arab
    • 1
    • 2
    Email author
  • Somia Hamil
    • 1
    • 3
  • Mohamed Abdessamad Rezzaz
    • 4
  • Amin Chaffai
    • 1
  • Abdeslam Arab
    • 1
  1. 1.Laboratory of Dynamics and Biodiversity, FSBUSTHBBab EzzouarAlgeria
  2. 2.FSTGATUSTHBBab EzzouarAlgeria
  3. 3.L.E.B.A., ENS KoubaAlgiersAlgeria
  4. 4.Laboratory of Geomorphology and Geohazard, FSTGATUSTHBBab EzzouarAlgeria

Personalised recommendations