Advertisement

Monthly assessment of TRMM 3B43 rainfall data with high-density gauge stations over Tunisia

  • Emna MedhioubEmail author
  • Moncef Bouaziz
  • Hammadi Achour
  • Samir Bouaziz
Original Paper
  • 104 Downloads

Abstract

Rainfall data are essential for many environmental applications; however, such data are sparse or not available. The Tropical Rainfall Measuring Mission (TRMM) products are widely used to estimate the rainfall over 75% of the earth and with a spatial resolution of 0.25° (approximately 28 km). The present study was carried out to examine the reliability of remote sensing rainfall data from TRMM data over four governorates (i.e., Gabes, Jendouba, Nabeul, and Kasserine) in Tunisia. Among the TRMM available database, the used data are the monthly products TRMM-3B43 version 7. Two different approaches were conducted to assess the accuracy of satellite rainfall data. The first one is the punctual rainfall control approach, which is based on the calculation of the difference between rainfall data from the TRMM-3B43 product and the ground truth measurements. To do this, we used 149 rainfall stations spread over Tunisia for a period of 16 years (1998–2013). The second approach is based on the spatial autocorrelation analysis of bias between TRMM data and in situ data. Results indicated a good correlation (r≈0.8) between TRMM-3B43data and those derived from weather stations. The highest correlations (r > 0.88) are shown in Jendouba and Nabeul governorates, while Kasserine and Gabes have registered the lowest correlations, with 0.709 and 0.714, respectively. Overall, TRMM remote sensing products tend to overestimate ground precipitation measurements due to the high influence of orographic and climatic parameters on the precipitation accuracy assessment.

Keywords

TRMM Precipitation Accuracy assessment Tunisia 

Notes

Acknowledgments

The authors express gratitude to Technische Universität Dresden (TU Dresden) and Deutscher Akademischer Austauschdienst (DAAD) for financial assistance of the research. Authors are also thankful to the Japanese Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) for the TRMM data. A special thanks is still given to the Regional Agricultural Development Commissariats for the ground rainfall measurements used as reference to validate the satellite data.

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167.  https://doi.org/10.1175/1525-7541 CrossRefGoogle Scholar
  2. Anjum MN, Ding Y, Shangguan D, Tahir AA, Iqbal M, Adnan M (2016) Comparison of two successive versions 6 and 7 of TMPA satellite precipitation products with rain gauge data over Swat Watershed, Hindukush Mountains, Pakistan. Atmos Sci Let 17:270–279.  https://doi.org/10.1002/asl.654 CrossRefGoogle Scholar
  3. Atlas Cartographique (2010) Schéma directeur d’aménagement de la région économique du Nord-ouest - Atlas De La Région Economique Du Nord-Ouest Tunisien Ministère de l’équipement, de l’Habitat et de l’aménagement du territoire - direction générale de l’aménagement du territoire, Juillet 2010, pp 2–5Google Scholar
  4. Atlas de la région économique du Sud-Est Tunisien (2011) L'étude du Schéma Directeur d'Aménagement de la Région Economique du Sud-Est Tunisien, Ministère de l’équipement, de l’Habitat et de l’aménagement du territoire - direction générale de l’aménagement du territoire 2011, pp 2–7Google Scholar
  5. Atlas du gouvernorat de Kasserine (2011) Bureau d’études « Agence de Recherches en Construction (ARC), ministère du transport et de l’équipement- direction générale de l’aménagement du territoire, Avril 2011, pp 6–8Google Scholar
  6. Ben Slama S (2011) Stratégie du Développement du Gouvernorat de Nabeul, République Tunisienne, Ministère du Développement Régional et de la Planification, p 4Google Scholar
  7. CDCGE (2006) Programme d’action régional de lutte contre la désertification du gouvernorat de Gabès, ministère de l’environnement et du développement durable - direction générale de l’environnement et de la qualité de la vie - Sté consulting en développement communautaire et en gestion d’entreprises “CDCGE“, janvier 2006, pp 29–31Google Scholar
  8. Chen Y, Ebert EE, Walsh KJE, Davidson NE (2013) Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J Geophys Res - Atmos 118:1–13.  https://doi.org/10.1002/jgrd.50250 CrossRefGoogle Scholar
  9. Cohen Liechti T, Matos JP, Boillat L, Schleiss AJ (2012) Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol Earth Syst Sci 16:489–500 www.hydrol-earth-syst-sci.net/16/489/2012/. Accessed 14 Feb 2012.  https://doi.org/10.5194/hess-16-489-2012
  10. Condom T, Rau P and Espinoza JC (2010) Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007, Hydrol. Process. (2010) Published online in Wiley Online Library (wileyonlinelibrary.com).  https://doi.org/10.1002/hyp.7949
  11. Duan Z, Bastiaanssen WGM, Liu J (2012) Monthly and annual validation of TRMM Multi-satellite Precipitation Analysis (TMPA) products in the Caspian Sea region for the period 1999–2003. 978–1–4673-1159-5/12 IEEEGoogle Scholar
  12. Ebert EE (2007) Methods for verifying satellite precipitation estimates. Measuring Precipitation from Space - EURAINSAT and the future, Advances in Global Change Research 28, pp 345–356.40Google Scholar
  13. Elamri S (2015). Stratégie du Développement du Gouvernorat de Kasserine, Ministère du Développement Régional et de la Planification, octobre 10, 2015Google Scholar
  14. Feidas H (2009) Validation of satellite rainfall products over Greece. Theor Appl Climatol 99:193–216.  https://doi.org/10.1007/s00704-009-0135-8 CrossRefGoogle Scholar
  15. Fleming K, Awange JL (2013) Comparing the version 7 TRMM 3B43 monthly precipitation product with the TRMM 3B43 version 6/6A and Bureau of Meteorology datasets for Australia. Austral. Meteorol. Oceanogr. J 63(2013):421–426Google Scholar
  16. Greene JS, Morrissey ML (2000) Validation and uncertainty analysis of satellite rainfall algorithms. Prof Geogr 52:247–258.  https://doi.org/10.1111/0033-0124.00222 CrossRefGoogle Scholar
  17. Huffman GJ (1997) Estimates of root-mean-square random error for finite samples of estimated precipitation. J Appl Meteorol 36:1191–1201.  https://doi.org/10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2 CrossRefGoogle Scholar
  18. Huffman GJ and Bolvin DT (2012) Real-time TRMM multi-satellite precipitation analysis data set documentation. ftp://trmmopen.gsfc.nasa.gov/pub/merged/V7Documents/3B4XRT_doc_V7.pdf. Accessed 08 June 2014
  19. Huffman GJ and Bolvin DT (2013) TRMM and other data precipitation data set documentation. Global Change Master Directory, NASA, 40 pp. Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf. Accessed 08 June 2014
  20. Huffman GJ and Bolvin DT (2014), TRMM and other data precipitation dataset documentation. TRMM 3B42_3B43_doc. Available online at https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7_4_19_17.pdf. Accessed 01 Nov 2015
  21. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55.  https://doi.org/10.1175/JHM560.1 CrossRefGoogle Scholar
  22. Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010). The TRMM Multi-satellite Precipitation Analysis (TMPA). Chapter 1 in Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds. Springer Verlag, ISBN: 978-90-481-2914-0, pp 3–22Google Scholar
  23. Immerzeel WW, Rutten MM, Droogers P (2008) Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens Environ 113(2009):362–370Google Scholar
  24. Jayet PY, Rimoldi SF, Stuber T, Salmòn CS, Hutter D, Rexhaj E, Thalmann S, Schwab M, Turini P, Sartori-Cucchia C, Nicod P, Villena M, Allemann Y, Scherrer U, Sartori C (2010) Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation 122:488–494.  https://doi.org/10.1161/CIRCULATIONAHA.110.941203 CrossRefGoogle Scholar
  25. Kaba E, Philpot W, Steenhuis T (2014) Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia. Int J Appl Earth Obs 26:286–297.  https://doi.org/10.1016/j.jag.2013.08.001 CrossRefGoogle Scholar
  26. Karaseva MO, Prakash S, Gairola RM (2012) Validation of high-resolution TRMM-3B43 precipitation product using rain gauge measurements over Kyrgyzstan. Theor Appl Climatol 108:147–157.  https://doi.org/10.1007/s00704-011-0509-6 CrossRefGoogle Scholar
  27. Kidd C, Bauer P, Turk J et al (2012) Intercomparison of high-resolution precipitation products over northwest Europe. J Hydrometeorol 13:67–83.  https://doi.org/10.1175/JHM-D-11-042.1
  28. Kubota T, Shige S, Aonashi K, Okamoto K (2009) Development of nonuform beamfilling correction method i rainfall retrievals for passive microwave radiometers over ocean using TRMM observations. J Meteor Soc. Japan, 87A, 153–164Google Scholar
  29. Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker AERF, Houa A, Kakarb R, Wentzc F, Ashcroftc P, Kozud T, Hong Y, Okamotof K, Iguchif T, Kuroiwaf H, Img E, Haddadg Z, Huffman GJ, Ferrieri B, Olsoni WS, Zipserj E, Smithk EA, Wilheitl TT, Northl G, Krishnamurtim T, Nakamuran K (2000) The status of the tropical rainfall measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982.  https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2 CrossRefGoogle Scholar
  30. Lavado-Casimiro W, Labat D, Guyot JL, Ronchail J, Ordonez JJ (2009) TRMM rainfall data estimation over the Peruvian Amazon–Andes basin and its assimilation into a monthly water balance model. IAHS Publ. 333:245–252Google Scholar
  31. Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241.  https://doi.org/10.1029/1998WR900018 CrossRefGoogle Scholar
  32. Li XH, Zhang Q, Xu CY (2012) Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J Hydrol 426–427(2012):28–38.  https://doi.org/10.1016/j.jhydrol.2012.01.013 CrossRefGoogle Scholar
  33. Liu Z (2014) Comparison of precipitation estimates between version 7 3-hourly TRMM multi-satellite precipitation analysis (TMPA) near-real-time and research products. Atmos Res 153(2015):119–133Google Scholar
  34. Liu Z (2015) Comparison of versions 6 and 7 3-hourly TRMM multi-satellite precipitation analysis (TMPA) research products. Atmos Res 163(2015):91–101.  https://doi.org/10.1016/j.atmosres.2014.12.015 CrossRefGoogle Scholar
  35. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712.  https://doi.org/10.1002/joc.1181 CrossRefGoogle Scholar
  36. Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc Ser B Methodol 10(2):243–251Google Scholar
  37. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37(1-2):17–23.  https://doi.org/10.1093/biomet/37.1-2.17 CrossRefGoogle Scholar
  38. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I. a discussion of principles. J Hydrol 10(3):282–290.  https://doi.org/10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  39. Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: validation of TRMM rainfall products. J Appl Meteorol 42:1355–1368Google Scholar
  40. Oke AMC, Frost AJ and Beesley CA (2009) The use of TRMM satellite data as a predictor in the spatial interpolation of daily precipitation over Australia. 18th World IMACS / MODSIM Congress, Cairns, Australia 13–17 July 2009 http://mssanz.org.au/modsim09
  41. Omotosho TV, Mandeep JS, Abdullah M, Adediji AT (2013) Distribution of one-minute rain rate in Malaysia derived from TRMM satellite data. Ann Geophys 31:2013–2022, 2013.  https://doi.org/10.5194/angeo-31-2013-2013 CrossRefGoogle Scholar
  42. Prakash S, Gairola RM (2013) Validation of TRMM-3B42 precipitation product over the tropical Indian Ocean using gauge data from the RAMA buoy array. Theor Appl Climatol 115:451–460.  https://doi.org/10.1007/s00704-013-0903-3 CrossRefGoogle Scholar
  43. Prakash S, Mahesh C, Gairola RM (2013) Comparison of TRMM multi-satellite precipitation analysis (TMPA)-3B43 version 6 and 7 products with rain gauge data from ocean buoys. Remote Sens Lett 4(7):677–685.  https://doi.org/10.1080/2150704X.2013.783248 CrossRefGoogle Scholar
  44. Qiao L, Hong Y, Chen S, Zou CB, Gourley JJ, Yong B (2014) Performance assessment of the successive version 6 and version 7 TMPA products over the climate-transitional zone in the southern Great Plains, USA. J Hydrol 513:446–456.  https://doi.org/10.1016/j.jhydrol.2014.03.040 CrossRefGoogle Scholar
  45. Santos RMB, Sanches Fernandes LF, Moura JP, Pereira MG, Pacheco FAL (2014) The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. J Hydrol 519:1297–1314CrossRefGoogle Scholar
  46. Sarrand B (2011) Evaluation Du Produit Satellitaire de Précipitations TRMM-3B42 En Méditerranée Avec Un Focus Sur Les Épisodes de Transport de Particules Sahariennes, Gif-Sur-Yvette: LSCEGoogle Scholar
  47. Simpson J, Adler RF, North GR (1988) A proposed tropical rainfall measuring Mission (TRMM) satellite. Bull Am Meteorol Soc 69:278–295.  https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2
  48. STEG (2013) Rapport final : Etude de suivi de l’avifaune de la centrale éolienne de Sidi Daoud - La Société Tunisienne de l’Electricité et du Gaz (STEG) - Eco-Ressources International, Juillet 2013 pp 8–12Google Scholar
  49. Tang L, Tian Y, Yan F, Habib E (2015) An improved procedure for the validation of satellite-based precipitation estimates. Atmos Res 163(2015):61–73.  https://doi.org/10.1016/j.atmosres.2014.12.016 CrossRefGoogle Scholar
  50. Terêncio DPS, Sanches Fernandes LF, Cortes RMV, Pacheco FAL (2017) Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J Hydrol 550:318–330CrossRefGoogle Scholar
  51. Terêncio DPS, Sanches Fernandes LF, Cortes RMV, Moura JP, Pacheco FAL (2018) Rainwater harvesting in catchments for agro-forestry uses: a study focused on the balance between sustainability values and storage capacity. Sci Total Environ 613-614:1079–1092CrossRefGoogle Scholar
  52. Tian Y, Peters-Lidard CD, Eylander JB, Joyce RJ, Huffman GJ, Adler RF, Hsu K, Turk FJ, Garcia M, Zeng J (2009) Component analysis of errors in satellite-based precipitation estimates. J Geophys Res 114(D24):1–15.  https://doi.org/10.1029/2009JD011949 CrossRefGoogle Scholar
  53. Tu J, Xia ZG (2008) Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Sci Total Environ 407(1):358–378.  https://doi.org/10.1016/j.scitotenv.2008.09.031 CrossRefGoogle Scholar
  54. Worqlul AW, Maathuis B, Adem AA, Demissie SS, Langan S, Steenhuis TS (2014) Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrol Earth Syst Sci 18:4871–4881.  https://doi.org/10.5194/hess-18-4871-2014 CrossRefGoogle Scholar
  55. Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558.  https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 CrossRefGoogle Scholar
  56. Yong B, Chen B, Gourley JJ, Ren L, Hong Y, Chen X, Wang W, Chen S, Gong L (2014a) Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J Hydrol 508:77–87.  https://doi.org/10.1016/j.jhydrol.2013.10.050 CrossRefGoogle Scholar
  57. Yong B, Liu D, Gourley JJ, Tian Y, Huffman GJ, Ren L, Hong Y (2014b) Global view of real-time TRMM multisatellite precipitation analysis: implications for its successor global precipitation measurement Mission. Bull Am Meteorol Soc 2015:283–296.  https://doi.org/10.1175/BAMS-D-14-00017.1 CrossRefGoogle Scholar
  58. Zeng HW, Li LJ, Li JY (2012) The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang River Basin. J Geogr Sci 22(2):273–282Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Laboratoire 3E, Ecole Nationale d’Ingénieurs de SfaxUniversité de SfaxSfaxTunisia
  2. 2.Faculty of environmental sciences, TU-DresdenInstitute of GeographyDresdenGermany
  3. 3.Université de JendoubaInstitut Sylvo-pastoral de TabarkaJendoubaTunisia
  4. 4.Unité de recherche « Géomatique des Géosystèmes » 02/UR/10-01Université de la MannoubaMannoubaTunisia

Personalised recommendations