Skip to main content

Garnet–orthopyroxene (GOPX) geothermometer: a comparative study

Abstract

The garnet–orthopyroxene pairs are commonly found in the assemblages of basic granulites/charnockite and hence are suitable for estimating equilibrium temperature of these metamorphic rocks. At present, there are many calibrations of garnet–orthopyroxene thermometer that may confuse geologists in choosing a reliable thermometer. To test the accuracy of the garnet–orthopyroxene thermometers, we have applied 14 models formulated by a number of workers since 1980 to date. We have collated 51 samples from the literature all over the world, which has been processed through the “Gt-Opx.EXE” software. Based on the present study, we have identified a set of the best among all the 14 models which were considered under this comparative study. We have concluded that the five garnet–orthopyroxene (Gt-Opx) thermometers are the most valid and reliable of this kind of thermometer: Aranovich and Berman (Am Mineral 82:345–353, 1997), Raith et al. (Earth Sci 73:211–244, 1983), Harley (Contrib Mineral Petrol 86:359–373, 1984), Nimis and Grütter (Contrib Mineral Petrol 159:411–427, 2010), and Sen and Bhattacharya (Contrib Mineral Petrol 88:64–71, 1984).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Aranovich LY, Berman RG (1995) Solubility of Al2O3 in orthopyroxene equilibrated with almandine in the system Fe0-A1203-Si02. Current Research of the Geological Survey of Canada Paper, pp 271–278

  • Aranovich LY, Berman RG (1997) A new garnet – orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene. Am Mineral 82:345–353

    Article  Google Scholar 

  • Aranovich LY, Podlesskii KK (1989) Geothermobarometry of high grade metapelites: simultaneously operating reactions. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of Metamorphic belts, Geol. Soc. Sp. Publ., vol 43. pp 45–61

  • Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals. Contrib Mineral Petrol 126(1–2):1–24

    Article  Google Scholar 

  • Bhattacharya A, Krishna Kumar KR, Raith M, Sen SK (1991) An improved set off a-x parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene - garnet theromometer and the orthopyroxene-garnet-plagioclase-quartz barometer. J Petrol 32:629–656

    Article  Google Scholar 

  • Bohlen SR (1987) Pressure-temperature-time paths and a tectonic model for the evolution of granulites. J Geol 95(5):617–632

    Article  Google Scholar 

  • Bohlen SR, Essene EJ (1980) Evaluation of coexisting garnet-biotite, garnet-clinopyroxene, and other Mg-Fe exchange thermometers in adirondack granulites. Geol Soc Am Bull 91(2):685–719

    Article  Google Scholar 

  • Carson CJ, Powell R (1997) Garnet–orthopyroxene geothermometry and geobarometry: error propagation and equilibration effects. J Metamorph Geol 15(6):679–686

    Article  Google Scholar 

  • Dahl PS (1980) The thermal-compositional dependence of Fe2+-Mg2+ distributions between coexisting garnet and pyroxene: applications to geothermometry. Am Mineral 65:852–866

    Google Scholar 

  • Dasgupta S, Sengupta P (1995) Ultrametamorphism in Precambrian granulite terranes: evidence from Mg-Al granulites and calc-silicate granulites of the Eastern Ghats, India. Geol J 30(3–4):307–318

    Article  Google Scholar 

  • Essene EJ (1989) The current status of thermobarometry in metamorphic rocks. In: Daly SR, Cliff R (eds) Evolution of Metamorphic Belts, Special Paper-Geol. Soc, vol 43. pp 1–44

  • Essene EJ, Peacor DR (1995) Clay mineral thermometry—a critical perspective. Clay Clay Miner 43:540–553

    Article  Google Scholar 

  • Fareeduddin, Shankar M, Basvalingu B, Janardhan AS (1994) Metamorphic P-T conditions of pelitic granulites and associated charnockites of Chinwali area, west of Delhi fold belt, Rajasthan. J Geol Soc India 43:169–178

  • Ferry JM (1980) A comparative study of geothermometers and geobarometers in pelitic schists from south-central Maine. Am Mineral 65:720–732

    Google Scholar 

  • Fu B, Zheng YF, Li YL, Li SG (1998) Applications of garnet–clinopyroxene geothermometers to eclogite assemblages. Acta Mineral Acta 18:145–157

    Google Scholar 

  • Green DH, Ringwood AE (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta 31(5):767–833

    Article  Google Scholar 

  • Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Article  Google Scholar 

  • Harley SL (1989) The origins of granulites: a metamorphic perspective. Geol Mag 126(3):215–247

    Article  Google Scholar 

  • Hokada T (2001) Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining~1100° C in the Archean Napier Complex, East Antarctica. Am Mineral 86(7–8):932–938

    Article  Google Scholar 

  • Jahnson CA, Bohlen SR, Essene EJ (1983) An evaluation of garnet–clinopyroxene geothermometry in granulites. Contrib Mineral Petrol 84:191–198

    Article  Google Scholar 

  • Joshi M, Thomas H, Sharma RS (1993) Granulite facies metamorphism in the Achaean gneiss complex from North– Central Rajasthan. Proc Nat Acad Sci India A 63(1):167–187

    Google Scholar 

  • Klemd R, Bröcker M (1999) Fluid influence on mineral reactions in ultrahigh-pressure granulites: a case study in the Śnieżnik Mts. (West Sudetes, Poland). Contrib Mineral Petrol 136(4):358–373

    Article  Google Scholar 

  • Lal RK (1993) Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet - orthopyroxene – plagioclase - quartz assemblages and their application to the South Indian granulites. J Metamorph Geol 11:855–866

    Article  Google Scholar 

  • Lee HY, Ganguly J (1984) Fe, Mg fractionation between garnet and orthopyroxene: experimental data and application. Geol Soc Am (abs), 52733 (Reprints)

  • Lee HY, Ganguly J (1988) Equilibrium compositions of coexisting orthopyroxene and garnet: experimental determinations in the system FeO-MgO-Al2O3-SiO2, and applications. J Petrol 29:93–113

    Article  Google Scholar 

  • Mouri H, Guiraud M, Hensen BJ (1996) Petrology of phlogopite-sapphirine-bearing Al-Mg granulites from Ihouhaouene, In Ouzzal, Hoggar, Algeria: an example of phlogopite stability at high temperature. J Metamorph Geol 14(6):725–738

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159(3):411–427

    Article  Google Scholar 

  • Nurminen KB, Ohta Y (1993) Granulites and garnet-cordierite gneisses from Dronning Maud land, Antarctica. J Metamorph Geol 11:691–703

    Article  Google Scholar 

  • Pal S, Bose S (1997) Mineral reactions and geothermobarometry in a suite ofgranulite facies rocks from Paderu, Eastern Ghats granulitebelt: A reappraisal of the P-T trajectory. lndian Acad Sci Earth Planet Sci 106(3):77–89

    Google Scholar 

  • Perchuk LL, Aranovich LY, Podlesskii KK, Lavrente’va IV, Korsakov LP, Berdnikov NV (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J Metamorph Geol 3:265–310

    Article  Google Scholar 

  • Perchuk LL, Lavrente’va IV (1990) Garnet-orthopyroxene and garnet-amphibole geothermobarometry: experimen-tal data and thermodynamics. Int Geol Rev 32:486–507

    Article  Google Scholar 

  • Perchuk LL, Podlesskii KK, Aranovich LY (1981) Calculation of thermodynamic properties of end-member minerals from natural parageneses. In: Thermodynamics of minerals and melts. Springer, New York, pp 111–129

  • Raith M, Raase P, Ackermand D, Lal RK (1983) Regional geothermobarometry in the granulite facies terrane of S India. Tram R Soc Edinb Earth Sci 73:211–244

    Google Scholar 

  • Rathmell MA, Streepey MM, Essene EJ, van der Pluijm B (1999) Comparison of garnet–biotite, calcite–graphite and calcite - dolomite geothermometry in the Grenville Orogen, Ontario, Canada. Contrib Mineral Petrol 134:217–231

    Article  Google Scholar 

  • Sajeev K, Osanai AY, Santosh AM 2004. Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet–orthopyroxene–sillimanite granulites from Ganguvarpatti, Madurai block, southern India. Contrib Mineral Petrol 148:29–46

    Article  Google Scholar 

  • Sen SK, Bhattacharya A (1984) An orthopyroxene-garnet thermometer and its application to the Madras charnockites. Contrib Mineral Petrol 88:64–71

    Article  Google Scholar 

  • Smithies RH, Bagas L (1997) High pressure amphibolite-granulite facies metamorphism in the Paleoproterozoic Rudall Complex, central Western Australia. Precambrian Res 83(4):243–265

    Article  Google Scholar 

  • Thomas H (2003) Garnet - orthopyroxene - plagioclase - quartz equilibria: a comparative study. Gond Geol Magz, advances in Precambrian of Central India, special volume no.7, pp 327–337

  • Thomas H, Paudel LP (2016) Geothermobarometer based on coexisting garnet – orthopyroxene –plagioclase - quartz equilibria. J Nepal Geol Soc 51:1–10

    Google Scholar 

  • Wu C-M, Cheng B-H (2006) Valid garnet - biotite (GB) geothermometry and garnet-aluminum silicate-plagioclase-quartz (GASP) geobarometry in metapelitic rocks. Lithos 89:1–23

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Head, Department of Applied Geology, Doctor Harisingh Gour Vishwavidyalaya, Sagar (M.P.) and the Department of Science and Technology, New Delhi, India, for providing facilities as including PURSE-Phase-II for conducting present research work. The authors express sincere thanks to the reviewer, Prof. Chun Ming Wu, Laboratory of Computational Geodynamics, The Graduate School, Chinese Academy of Sciences, China, for his critical and constructive reviews which significantly improved the focus and clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harel Thomas.

Electronic supplementary material

ESM 1

(DOCX 133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, H., Rana, H. & Shahid, M. Garnet–orthopyroxene (GOPX) geothermometer: a comparative study. Arab J Geosci 11, 771 (2018). https://doi.org/10.1007/s12517-018-4060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-4060-y

Keywords

  • Garnet
  • Orthopyroxene
  • Exchange reaction
  • Granulite
  • Comparative study