Water resource management using geothermal energy: Eritrea

Abstract

Eritrea is a country with rich gold, silver and base-metal deposits and geothermal energy resources associated with all the five volcanoes located within the Danakil graben. Due to low rainfall, the country has to depend on imported food and food imports have crossed > 46% in the recent years. Although the cultivable land is about 16,000 km2, only 5030 km2 land is being cultivated due to insufficient water resources. The per capita water requirement is projected to fall below 1300 m3/year from the present 1470 m3/year. The country’s GDP has fallen from 1.3% in 2013 to 0.3% in 2015. Each geothermal province associated with the active volcanoes can support to generate 445 million m3 of desalinated water from the Red Sea. Providing basic needs like water and energy will boost the country’s economy and lift the socio-economic status of 6 million people in the country.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abraha M (2007) Geothermal exploration opportunities. Trans, Geothermal Res Council 31:41–48

    Google Scholar 

  2. ADB. 2014. African Development Bank; Interim Country Strategy Paper (I-CSP, 2014–2016); Yemen. 48p.

  3. Al-Amri AMS (1994) Seismicity of the south-western region of the Arabian Shield and Southern Red Sea. J. African Earth Sci. 19:17–25

    Article  Google Scholar 

  4. Alemngus A, Amlesom S, Bovas JJL (2017) An overview of Eritrea’s water resources. Intern. J.Engg. R and D 13:74–84

    Google Scholar 

  5. Barberi F, Varet J (1970) The Erta Ale volcanic range (Danakil Depression). Northern Afar, Ethiopia: Bulletin Volcanologique 34:848–917

    Google Scholar 

  6. Barberi F, Borsi S, Ferrara G, Marinelli G, Santocroce R, Tazieff H, Varet J (1972) Evolution of the Danakil Depression (Afar, Ethiopia) in light of radiometric age determinations. J. Geology 80:720–729

    Article  Google Scholar 

  7. Barrie CT, Nielsen FW, Aussant CH (2007) The Bisha volcanic associated massive sulphide deposit, western Nakfa terrane. Eritrea. Eco. Geol. 102:717–738

    Article  Google Scholar 

  8. Battistellia A, Yiheyis A, Calore C, Ferragina C, Abatneh W (2002) Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift. Ethiopia. Geothermics 31:381–406

    Article  Google Scholar 

  9. Berhane EY (2004) Geochemical interpretation of thermal waters and gas samples from Krysuvik, Iceland and Alid. Eritrea. Geothermal Training Programme Report 18:14

    Google Scholar 

  10. Bertani, R. 2015. Geothermal power generation in the world 2010–2014 update report. Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015.

  11. Beyene, A.T. 2012. Multidimensional inversion of MT data from Alid geothermal area, Eritrea; comparison with geological structures and identification of a geothermal reservoir. Masters Thesis, Faculty of Science, Univ. Iceland. 138p.

  12. Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J. African. Earth Sci. 43:334–378

    Google Scholar 

  13. Camp VE, Roobol MJ (1992) Upwelling asthenosphere beneath Western Arabia and its regional implications. J.Geophy. Res. 97:15,255–15,271

    Article  Google Scholar 

  14. Chandrasekharam, D. and Bundschuh, J. 2008. Low enthalpy geothermal resources for power generation. CRC Press., 149 p.

  15. Chandrasekharam D, Lashin A, AlArifi N, AlBassam AA, Varun C (2015) Evolution of geothermal systems around the Red Sea. Environ. Earth Sci. 73:4215–4236

    Article  Google Scholar 

  16. Chandrasekharam, D., Lashin, A., AlArifi, N. and Al-Bassam, M.2016a. Red Sea geothermal Provinces. CRC Press, 221p.

  17. Chandrasekharam, D, Lashin, A., AlArifi, N., AlBassam, A. and VarunC. 2016b. Desalination of seawater using geothermal energy to meet future fresh water demand of Saudi Arabia. Water Res. Manage. https://doi.org/10.1007/s11269-016-1419-2.

    Article  Google Scholar 

  18. Chandrasekharam, D., Lashin, A., AlArifi, N., and Al-Bassam, A.M. 2017. Desalination of seawater using geothermal energy for food and water security: Arab and sub-Sahara countries. Chapter 4, 54p., inG.Gnaneswar (Etd). Handbook on sustainable desalination handbook—process design and implementation strategies Elsevier Pub. (in press).

  19. Coulié E, Quidelleur X, Gillot P-Y, Courtillot V, Lefe’vre J-C, Chiesa S (2003) Comparative K–Ar and Ar/Ar dating of Ethiopian and Yemenite Oligocene volcanism: implications for timing and duration of the Ethiopian traps. Earth Planetary Sci Letters 206:477–492

    Article  Google Scholar 

  20. Dawoud MA, AlMulla MM (2012) Environmental impacts of seawater desalination: Arabian Gulf case study. Int J Environ Sustainability 1:22–37

    Article  Google Scholar 

  21. Duffield WA, Bullen TD, Clynne MA, Fournier RO, Janik CJ, Lanphere MA, Lowenstern J, Smith JG, Giorgis L, Kahsai G, Mariam K, Tesfai T (1997) Geothermal potential of the Alid volcanic center, Danakil Depression, Eritrea. US Geological Survey Open File Report 291:62

    Google Scholar 

  22. EIA (2016) Energy related CO2 emissions from natural gas surpass coal as fuel use pattern change. Energy International Administration, Washington, 2p.

  23. FAO. 2015. Irrigation in Africa in figures, AQUASTAT Survey—2005, FAO Water Reports, No 29, Rome, Italy, 2005.

  24. Fiorenza G, Sharma VK, Braccio G (2003) Techno-economic evaluation of a solar powered water desalination plant. Energy Convers. Manag. 44:2217–2240

    Article  Google Scholar 

  25. Ghaffour, N., Lattemann, S., Missimer, T., Ng, K.C., Sinha, S. and, Amy, G 2014. Renewable energy-driven innovative energy-efficient desalination technologies. App. Energy 136:1155–1165.

    Article  Google Scholar 

  26. Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta. 52:2749–2765

    Article  Google Scholar 

  27. Girdler RW, Styles P (1978) Seafloor spreading in the western Gulf of Aden. Nature.:615–657

    Article  Google Scholar 

  28. Gude VG (2015) Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl. Energy 137:877–898

    Article  Google Scholar 

  29. Gude VG (2016) Desalination and sustainability—an appraisal and current perspective. Water Res. 89:87–106

    Article  Google Scholar 

  30. Gurtner M, Zewenghel G, Eyassu H, Zerai T, Hadgu Y, Stillhardt B, Roden P. 2006. Land management in the central highlands of Eritrea: a participatory appraisal of conservation measures and soils in Afdeyu and its vicinity. Bern, Switzerland: Geographica Bernensia. 206p.

  31. Hoffmann C, Courtillot V, Fe′raud G, Rochette P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389:838–841

    Article  Google Scholar 

  32. IEA, 2014. International Energy Agency statistics. CO2 emission from fuel combustion.136p.

  33. Kalogirou SA (2005) Seawater desalination using renewable energy sources. Prog.EnergyCombust. Sci 31(3):242–281

    Google Scholar 

  34. Karytsas C, Mendrinos D, Radoglou G (2004) The current geothermal exploration and development of the geothermal field of Milos Island in Greece. Geo-Heat Centre Qtr. Bull. 25:17–21

  35. Lahitte P, Gillot P-Y, Kidane T, Courtillot V, Bekele A (2003) New age constraints on the timing of volcanism in central Afar, in the presence of propagating rifts, J.Geophys. Res., 108(B2). In: 2123

    Google Scholar 

  36. Lowenstern JB, Clynne MA, Bullen TD (1997) Comagmatic A-type granophyre and rhyolite from the Alid volcanic center, Eritrea, Northeast. Africa. J.Petrol 38:1707–1721

    Article  Google Scholar 

  37. Lowenstern JB, Janika CJ, Fournier RO, Tesfaib T, Duffield WA, Clynne MA, Smith JG, Woldegiorgis L, Weldemariam K, Kahsai G (1999) A geochemical reconnaissance of the Alid volcanic center and geothermal system\ Danakil depression, Eritrea. Geothermics 28:161–187

    Article  Google Scholar 

  38. Magidu, N. and Okumu, L.J. 2016. African economic outlook. African Development Bank (AfDB) and UNDP report. 15p.

  39. MEM, 2014. Mining excellence for driving economic growth. Asmara Mining Conference, Eritrea Mining Journal, Ministry of Mines. 28p.

  40. Miller, J.E. 2003. Review of water resources and desalination technologies, Sandia National Laboratories, SAND 2003-0800, 54p.

  41. MoA, 2002. Ministry of agriculture, Eritrea; The national action programme for Eritrea to combat desertification and mitigate the effects of drought (NAP), 208p. https://www.cia.gov/library/publications/the-world-factbook/geos/print_er.html).

  42. Mohr, P. (1978) AFAR, Annual Review Earth Sci., Vo. 6, 145-172

  43. Nedaw D, Chandrasekharam D, Gebreyohannes T (2013) High boron and sulphate groundwater in the Geba basin, Northern Ethiopia. Internl. J. Earth Engineering 6:8–13

    Google Scholar 

  44. Selamawit T, Kohler T. 2015. Upper Anseba’s surface water potential. In: EhrenspergerA, OttC, WiesmannU, editors. Eastern and Southern Africa partnership programme: highlights from 15 years of joint action for sustainable development. Bern, Switzerland: Centre for Development and Environment (CDE), University of Bern, with Bern Open Publishing (BOP), pp. 35–38. https://doi.org/10.7892/boris.72023.

  45. Shrestha E, Ahmad S, Johnson W, Shrestha P, Batisa JR( 2011) Carbon footprint of water conveyance versus desalination as alternative to expand water supply. Desalination 280:33–43

    Article  Google Scholar 

  46. Tripathi RP, Ogbazghi W, Amleson S (2015) Rice production prospects in Eritrea. J. Water Res. Protec. 7, 1429–1434

    Article  Google Scholar 

  47. Vasudevu K (2009) Development and management of groundwater in Eritrea. Indian J.Sci.Tech. 2:80–86

    Google Scholar 

  48. WAE 2008. Water for agriculture and energy in Africa. Proceed. High level conference on water for agriculture and energy in Africa: the challenges of climate change. Libya, 2008, 12p.

  49. Wiart P, Oppenheimer C (2005) Large magnitude silicic volcanism in north Afar: the Nabro Volcanic Range and Ma’alalta volcano. Bull Volcanol 67:99–115

    Article  Google Scholar 

  50. Wolfenden E, Ebinger C, Yirgu G, Renne PR, Kelley SP (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. GSA Bulletin 117:846–864

    Article  Google Scholar 

  51. World Bank (2012). www.data.worldbank.org/indicator/NY.GDP.PCAP.CD

  52. Yager, T. 2015. The mineral industry of Eritrea. 2013 Mineral Year Book; Eritrea, USGS 4p.

  53. Zarrouk SJ and Moon H (2014) Efficiency of geothermal power plants: A world review. Geothermcis 511:42–153

  54. Zerai H (1996) Groundwater and geothermal resources of Eritrea with the emphasis on their chemical quality. J. African. Earth Sci. 22:415–421

    Google Scholar 

Download references

Acknowledgments

The corresponding author thanks the Director Indian Institute of Technology Hyderabad for providing the facilities for this work.

Funding

The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research group no. (ISPP-0099).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dornadula Chandrasekharam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandrasekharam, D., Lashin, A., Al Arifi, N. et al. Water resource management using geothermal energy: Eritrea. Arab J Geosci 11, 523 (2018). https://doi.org/10.1007/s12517-018-3892-9

Download citation

Keywords

  • Groundwater
  • Water security
  • Food security
  • Geothermal resources
  • Desalination
  • Alid
  • Danakil