Skip to main content

Advertisement

Log in

Developing a seismic source model for the Arabian Plate

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A seismic source model is developed for the entire Arabian Plate, which has been affected by a number of earthquakes in the past and in recent times. Delineation and characterization of the sources responsible for these seismic activities are crucial inputs for any seismic hazard study. Available earthquake data and installation of local seismic networks in most of the Arabian Plate countries made it feasible to delineate the seismic sources that have a hazardous potential on the region. Boundaries of the seismic zones are essentially identified based upon the seismicity, available data on active faults and their potential to generate effective earthquakes, prevailing focal mechanism, available geophysical maps, and the volcanic activity in the Arabian Shield. Variations in the characteristics given by the above datasets provide the bases for delineating individual seismic zones. The present model consists of 57 seismic zones extending along the Makran Subduction Zone, Zagros Fold-Thrust Belt, Eastern Anatolian Fault, Aqaba-Dead Sea Fault, Red Sea, Gulf of Aden, Owen Fracture Zone, Arabian Intraplate, and a background seismic zone, which models the floating seismicity that is unrelated to any of the distinctly identified seismic zones. The features of the newly developed model make the seismic hazard results likely be more realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdalla JA, Al-Homoud AS (2004) Seismic hazard assessment of United Arab Emirates and its surroundings. J Earthq Eng 8:817–837

    Google Scholar 

  • Abdel Rahaman M, Tealeb A, Mohamed A, Deif A, Abou Elenean K, El Hadidy MS (2009) Seismotectonic zones at Sinai and its surrounding. NRIAG J Geophys 1:633–651

    Google Scholar 

  • Akyuz H, Altunel E, Karabacak V, Yalciner C (2006) Historical earthquake activity of the northern part of the Dead Sea fault zone, southern Turkey. Tectonophysics 426:281–293

    Google Scholar 

  • Al-Amri A, Punsslan BT, Khalil A, Uy EA (2004) Seismic hazard assessment of western Saudi Arabia and the Red Sea region. IISEE, Japan, pp 95–112

    Google Scholar 

  • Al-Arifi NS, Fat-Helbary RE, Khalil AR, Lashin AA (2013) A new evaluation of seismic hazard for the northwestern part of Saudi Arabia. Nat Hazards 69:1435–1457

    Google Scholar 

  • Alavi M (2007) Structures of the Zagros fold-thrust belt in Iran. Am J Sci 307:1064–1095

    Google Scholar 

  • Alchalabi A, Daoud M, Gomez F, McClusky S, Reilinger R, Abu Romeyeh M, Alsouod A, Yassminh R, Ballani B, Darawcheh R, Sbeinati R, Radwan Y, Al Masri R, Bayerly M, Al Ghazzi R, Barazangi M (2010) Crustal deformation in northwestern Arabia from GPS measurements in Syria: slow slip rate along the northern Dead Sea fault. Geophys J Int 180:125–135

    Google Scholar 

  • Aldama B (2009) An exploratory study of parameter sensitivity, representation of results and extension of PSHA: case study-United Arab Emirates, PhD thesis, Imperial College London

  • Aldama B, Bommer JJ, Fenton CH, Staford PJ (2009) Probabilistic seismic hazard analysis for rock sites in the cities of Abu Dhbi, Dubai and Ra's Al Khymah, United Arab Emirates. Georisk 3:1–29

    Google Scholar 

  • Al-Farajat M, Abdullah D, Al-Adamat R, Al-Amoush H (2016) Geo-structural analysis accompanied by GIS vulnerability mapping validated by hydro-chemical modeling in determining spatial expansion of landfills: case study from Jordan. J Civil Eng 10:2016–2367

    Google Scholar 

  • Al-Haddad M, Siddiqi GH, Al-Zaid R, Arafah A, Necioglu A, Turkelli N (1994) A basis for evaluation of seismic hazard and design criteria for Saudi Arabia. Earthquake Spectra 10:231–258

    Google Scholar 

  • Allen MB, Talebian M (2011) Structural variation along the Zagros and the nature of the Dezful embayment. Geol Mag 148:911–924

    Google Scholar 

  • Alridha N, Mohammed H (2015) Seismicity study of Khanaquin area. Iraqi J Sci 56:181–190

    Google Scholar 

  • Al-Shijbi Y (2013) Probabilistic seismic hazard assessment for Arabian plate. M.Sc. thesis, Sultan Qaboos University, Oman

  • Al-Zoubi A, Heinrichs T, Sauter M, Qabani I (2006) Geological structure of the eastern side of the lower Jordan Valley/Dead Sea rift: reflection seismic evidence. Mar Pet Geol 23:473–484

    Google Scholar 

  • Ambraseys NN (1983) Seismicity in the Arab region—an evaluation parameter– AFESD, IDB and UNESCO publication, (abstract)

  • Ambraseys NN, Jackson JA (1998) Faulting associated with historical and recent earthquakes in the eastern Mediterranean region. Geophys J Int 133:390–406

    Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and Red Sea. Cambridge University Press, Cambridge

    Google Scholar 

  • ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, Bou-Rabee F, Ogubazghi G, Haileab B, Fisseha S, Asfaw L, Mahmoud S, Rayan A, Bendik R, Kogan L (2010) Geodetic constraints on present-day motion of the Arabian plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29:TC3011

    Google Scholar 

  • Asfahani J, Darawcheh R (2017) Seismicity assessment in and around Syria based on instrumental data: application of Gumbel distributions and Gutenberg-Richter relationship. Arab J Geosci 10:86

    Google Scholar 

  • Authemayou C, Bellier O, Chardon D, Mal-Ekzadeh Z, Abbassi M (2005) Active partitioning between strike-slip and thrust faulting in the Zagros fold-and-thrust belt (southern Iran). C R Geosci 337:539–545

    Google Scholar 

  • Babiker N, Mula A, El-Hadidy S (2015) A unified mw-based earthquake catalogue and seismic source zones for the Red Sea. J Afr Earth Sci 109:168–176

    Google Scholar 

  • Bachmanov D, Trifonov V, Hessami K, Kozhurin A, Ivanova T, Rogozhin E, Hademi M, Jamali F (2004) Active faults in the Zagros and Central Iran. Tectonophysics 380:221–241

    Google Scholar 

  • Baer G, Funning G, Shamir G, Wright T (2008) The 1995 November 22, Mw 7.2 Gulf of Elat earthquake cycle revisited. Geophys J Int 175:1040–1054

    Google Scholar 

  • Baker C, Jackson J, Priestley K (1993) Earthquakes on the Kazerun line in the Zagros Mountains of Iran: strike-slip faulting within a fold-and-thrust belt. Geophys J Int 115:41–61

    Google Scholar 

  • Bartov Y, Steinitz G, Eyal M, Eyal Y (1980) Sinistral movement along the Gulf of Aqaba—its age and relation to the opening of the Red Sea. Nature 285:220–222

    Google Scholar 

  • Bayrak Y, Öztürk AS, Çınara H, Kalafat D, Tsapanos TM, Koravos GC, Leventakis GA (2009) Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Eng Geol 105:200–210

    Google Scholar 

  • Ben Avraham Z, Almajor G, Garfunkel Z (1979) Sediments and structure of the Gulf of Eilat, northern Red Sea. Sediment Geol 23:239–267

    Google Scholar 

  • Ben Menahem A (1979) Earthquake catalogue for the Middle East. Boll Geofis Teor Appl 21: 245–310

  • Berberian M (1981) Active faulting and tectonics of Iran, in Gupta, H.K., and Delany, F.M., editors, Zagros-Hindu Kush-Himalaya geodynamic evolution: American Geophysical Union geodynamic series 3, 33–69

    Google Scholar 

  • Berberian M (1995) Master ‘blind’ thrust faults hidden under the Zagros folds, active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224

    Google Scholar 

  • Berberian M, Yeats RS (1999) Patterns of historical earthquake rupture in the Iranian plateau. Bull Seismol Soc Am 89:120–139

    Google Scholar 

  • Bosence D, Nichlos G, Al-Subbary A, Al-Thour K, Reeder M (1996) Synrift continental to marine depositional sequences, tertiary, Gulf of Aden, Yemen. J Sediment Res 66:766–777

    Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and the Gulf of Aden basins. J Afr Earth Sci 43:334–378

    Google Scholar 

  • Brew, G., 2001. Tectonic evolution of Syria interpreted from integrated geophysical and geological analysis. [PhD thesis] Cornell Univ, USA

  • Brew G, Barazangi M, Al-maleh A, Sawaf T (2001) Tectonic and geologic evolution of Syria. GeoArabia 6:573–616

    Google Scholar 

  • Bulut F, Marco B, Tuna E, Janssen C, Kılıç T, Dresen G (2012) The East Anatolian Fault Zone: seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. J Geophys Res 117:B07304

    Google Scholar 

  • Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res 97:449–478

    Google Scholar 

  • Camp VE (1984) Island arcs and their role in the evolution of the western Arabian Shield. Bull Geol Soc Am 95:913–921

    Google Scholar 

  • Cochran JR, Martinez F, Steckler MS, Hobart MA (1986) Conrad deep, a new northern Red Sea deep, origin and implications for continental rifting. Earth Planet Sci Lett 78:18–32

    Google Scholar 

  • Coleman RG (1993) geologic evolution of the Red Sea. Oxford monographs on geology and geophysics, 24. Oxford University Press, Oxford

    Google Scholar 

  • Cornell CA, Vanmarcke EH (1969) The major influences on seismic risk. In: Proceedings of the fourth world conference of earthquake engineering, 1. Santiago, Chile, pp 69–83

    Google Scholar 

  • Daeron M, Benedetti L, Tapponnier P, Sursock A, Finkel RC (2004) Constraints on the post-25-ka slip rate of the Yammouneh fault (Lebanon) using in situ cosmogenic Cl-36 dating of offset limestone-clast fans. Earth Planet Sci Lett 227:105–119

    Google Scholar 

  • Daeron M, Klinger Y, Tapponnier P, Elias A, Jacques E, Sursock A (2007) 12,000 year long record of 10 to 13 paleo-earthquakes on the Yammouneh fault (Levant fault system, Lebanon). Bull Seismol Soc Am 97:749–771

    Google Scholar 

  • Daggett P, Morgan P, Boulos FK, Hennin SF, El-Sherif AA, El-Sayed AA, Basta NZ, Melek YS (1986) Seismicity and active tectonics of the Egyptian Red Sea margin and the northern Red Sea. Tectonophysics 125:313–324

    Google Scholar 

  • Deif A, El-Hussain I (2012) Seismic moment rate and earthquake mean recurrence interval in the major tectonic boundaries around Oman. J Geophys Eng 9:773–783

    Google Scholar 

  • Deif A, Abou-Elenean K, El-Hadidy M, Tealeb A, Mohamed A (2009a) Probabilistic seismic hazard maps for Sinai Peninsula, Egypt. J Geophys Eng 6:288–297

    Google Scholar 

  • Deif A, Zahran HM, El-Hadidy MS, Bawajee AO, El-Hadidy SY, Mansoub TA (2009b) Seismic hazard assessment along Haramein high speed rail project (Makkah-Madinah), internal SGS report

  • Deif A, Al-Shijbi Y, El-Hussain I, Ezzelarab M, Mohamed AME (2017) Compiling an earthquake catalogue for the Arabian plate, western Asia. J Asian Earth Sci 147:345–375

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Google Scholar 

  • El-Hadidy SY (2015) Seismicity and seismotectonic setting of the Red Sea and adjacent areas. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Berlin Heidelberg, pp 151–159

    Google Scholar 

  • El-Hefnawy M, Deif A, El-Hemamy ST, Gomaa NM (2006) Probabilistic assessment of earthquake hazard in Sinai in relation to the seismicity in the eastern Mediterranean region. Bull Eng Geol Environ 65:309–319

    Google Scholar 

  • El-Hussain I, Deif A, Al-Jabri K, Al-Hashmi S, Al-Toubi K, Al-Shijbi Y, Al-Saifi M (2010) Probabilistic and deterministic seismic hazard assessment for Sultanate of Oman (phase I), project #22409017, submitted to Sultan Qaboos University, Oman

  • El-Hussain I, Deif A, Al-Jabri K, Toksoz N, El-Hady S, Al-Hashmi S, Al-Toubi K, Al-Shijbi Y, Al-saifi M, Kuleli S (2012) Probabilistic seismic hazard maps for Sultanate of Oman. Nat Hazards 64:173–210

    Google Scholar 

  • El-Isa Z (2015) Seismicity and seismotectonics of the Red Sea region. Arab J Geosci 8:8505–8525

    Google Scholar 

  • El-Isa ZH, Al-Shanti A (1989) Seismicity and tectonics of the Red Sea and western Arabia. Geophys J 97:449–457

    Google Scholar 

  • Falcon NL (1961) Major earth-flexing in the Zagros Mountains of Southwest Iran. Q J Geol Soc Lond 117:367–376

    Google Scholar 

  • Farhoudi G, Karig DE (1977) Makran of Iran and Pakistan as an active arc system. Geology 5:664–668

    Google Scholar 

  • Ferry M, Meghraoui M, Abou Karaki N, Al-Taj M, Khalil L (2011) Episodic behavior of the Jordan Valley section of the Dead Sea fault from a 14-kyr-long integrated catalogue of large earthquakes. Bull Seismol Soc Am 101:39–67

    Google Scholar 

  • Fouad SFA, Sissakian VK (2011) Tectonic and structural evolution of the Mesopotamia plain. Iraqi Bull Geol Mining, Spec Issue 4:33–46

    Google Scholar 

  • Fournier M, Chamot-Rooke N, Petit C, Fabbri O, Huchon P, Maillot B, Lepvrier C (2008) In-situ evidence for dextral active motion at the Arabia-India plate boundary. Nat Geosci, Nature Publishing Group 1:54–58

    Google Scholar 

  • Garfunkel Z (1970) The tectonic of the western margin of the southern Arava (in Hebrew, English summary), thesis. Hebrew University, Jerusalem

    Google Scholar 

  • Garfunkel Z, Zak I, Freund R (1981) Active faulting in the Dead Sea rift. Tectonophysics 80:1–26

    Google Scholar 

  • Gillard D, Wyss M (1995) Comparison of strain and stress tensor orientation: application to Iran and southern California. J Geophys Res 100:22197–22213

    Google Scholar 

  • Girdler RW, Styles P (1974) Two stages Red Sea floor spreading. Nature 247:7–11

    Google Scholar 

  • Girdler RW, Underwood M (1985) The evolution of early oceanic lithosphere in the southern Red Sea. Tectonophysics 116:95–108

    Google Scholar 

  • Gok R, Mahdi H, Al-Shukri H, Rodgers AJ (2008) Crustal structure of Iraq from receiver functions and surface wave dispersion: implications for understanding the deformation history of the Arabian–Eurasian collision. Geophys J Int 172:1179–1187

    Google Scholar 

  • Gomez F, Meghraoui M, Darkal AN, Hijazi F, Mouty M, Suleiman Y, Sbeinati R, Darawcheh R, Al-Ghazzi R, Barazangi M (2003) Holocene faulting and earthquake recurrence along the Serghaya branch of the Dead Sea fault system in Syria and Lebanon. Geophys J Int 153:658–674

    Google Scholar 

  • Gomez F, Karam G, Khawlie M, McClusky S, Vernant P, Reilinger R, Jaafar R, Tabet C, Khair K, Barazangi M (2007) Geophys J Int 168:1021–1028. Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon

    Google Scholar 

  • Greenwood WR, Anderson RE, Fleck RJ, Roberts RJ (1980) Precambrian geologic history and plate tectonic evolution of the Arabian shield. Saudi Arabian Directorate General of Mineral Resources, Bulletin 24

  • Grunthal G, Wahlstrom R (2012) The European-Mediterranean earthquake catalogue (EMEC) for the last millennium. J Seismol 16:535–570

    Google Scholar 

  • Gullen L, Pinar A, Kalafat D, Ozel N, Horasan G, Yilmazer M, Isikar A (2002) Surface fault breaks, aftershock distribution, and rupture process of the 17 August 1999, Izmit earthquakes. Bull Seismol Soc Am 92:230–244

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geofis 9:1–15

    Google Scholar 

  • Haghipour A, Chorashi M, Kadjar M (1984) Explanatory text of the seismotectonic map of Iran, Afghanistan and Pakistan, commission for geological map of world-UNESCO. Geological Survey of Iran, Tehran

    Google Scholar 

  • Hamimi Z, El-Sawy K, El-Fakharani A, Matsah M, Shujoon A, El-Shafei MK (2014) Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia. J Afr Earth Sci 99:51–63

    Google Scholar 

  • Heidarzadeh M, Satake K (2014) Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquake. Geophys J Int 199:752–766

    Google Scholar 

  • Hessami K, Koyi H, Talbot C (2001) The significance of the strike-slip faulting in the basement of the Zagros fold and Thrust Belt. J Pet Geol 24:5–28

    Google Scholar 

  • Hessami K, Jamali F, Tabassi H (2003) Major active faults in Iran. Ministry of Science, research and technology, International Institute of Earthquake Engineering and Seismology (IIEES), 1:250000 scale map

  • Hessami K, Nilforoushan F, Talbot CJ (2006) Active deformation within the Zagros Mountains deduced from GPS measurements. J Geol Soc 163:143–148

    Google Scholar 

  • Hoffmann G, Klaus R, Christoph G, Magdalena R, Frank Preusser (2013) Holocene tsunami history of the Makran Subduction Zone (Northern Indian Ocean). 4th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 9–14 October 2013, Aachen, Germany

  • Hofstetter R, Klinger Y, Amrat AQ, Rivera L, Dorbath L (2007) Stress tensor and focal mechanisms along the Dead Sea fault and related structural elements based on seismological data. Tectonophysics 429:165–181

    Google Scholar 

  • Huber H (1977) Geological map of Iran, 1:1,000,000 with explanatory note, Natl. Iran Oil Co. Exploration and Production Affairs, Tehran

  • Ibrahim AO (2009) Tectonic Style and Evolution of the NW Segment of the Zagros Fold-Thrust Belt, Sulaimani Governorate, Kurdistan Region, NE Iraq. Ph.D. thesis, University of Sulaimani, Sulaimani

  • Jackson JA, McKenzie D (1984) Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264

    Google Scholar 

  • Jackson JA, White NJ, Garfunkel Z, Anderson H (1988) Relations between normal-fault geometry, tilting, and vertical motions in extensional terrains, an example from the southern Gulf of Suez. J Struct Geol 10:155–170

    Google Scholar 

  • Johnson PR (1998) Tectonic map of Saudi Arabia and adjacent areas. Deputy Ministry for Mineral Resources, USGS TR-98-3, Saudi Arabia

  • Johnson PR, Kattan FH (2012) The geology of the Saudi Arabian Shield. Jeddah, Saudi Geological Survey

    Google Scholar 

  • Johnson PR, Woldehaimanot B (2003) Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern east African Orogen and the assembly of Gondwana. Geol Soc Lond, Spec Publ 206:289–325

    Google Scholar 

  • Johnson PR, Andersen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 10:1–179

    Google Scholar 

  • Kazmin VG (2002) The late Paleozoic to Cainozoic in-traplate deformation in North Arabia: a response to plate boundary-forces. European Geosciences Union (EGU). Stephan Mueller Spec Publ Ser 2:123–138

    Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude Mmax. Pure Appl Geophys 161:1655–1681

    Google Scholar 

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files, part II. Bull Seismol Soc Am 82:120–134

    Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica 59:674–700

    Google Scholar 

  • Klinger Y, Avouac JP, Dorbath L, Abou Karaki N, Tisnerat N (2000) Seismic behaviour of the Dead Sea fault along Araba valley, Jordan. Geophys J Int 142:769–782

    Google Scholar 

  • Klinger Y, Le Béon M, Al-Qaryouti M (2015) 5000 yr of paleoseismicity along the southern Dead Sea fault. Geophys J Int 202:313–327

    Google Scholar 

  • Kusky T, Robinson C, El-Baz F (2005) Tertiary-Quaternary faulting and uplift in the northern Oman Hajar Mountains. J Geol Soc 162:871–888

    Google Scholar 

  • Lazar M, Ben-Avraham Z, Marco S, Garfunkel Z, Porat N, Ben-Avraham Z (2010) Is the Jericho escarpment a tectonic or a geomorphological feature? Active faulting and paleoseismic trenching. J Geol 118:261–276

    Google Scholar 

  • Le Beon M, Klinger Y, Al-Qaryouti M, Meriaux AS, Finkel RC, Elias A, Mayyas O, Ryerson FJ, Tapponnier P (2010) Early Holocene and Late Pleistocene slip rates of the southern Dead Sea fault determined from be-10 cosmogenic dating of offset alluvial deposits. J Geophys Res Solid Earth 115(B11414):24

    Google Scholar 

  • Lees GM, Falcon NL (1952) The geographical history of the Mesopotamian plains. Geogr J 118:24–39

    Google Scholar 

  • Lorei S, Lucazeau F, d’Acremont E, Watremez L, Autin J, Rouzo S, Bellahsen N, Tiberi C, Ebinger C, Beslier MO, Perrot J, Razin P, Rolandone F, Sloan H, Stuart G, Al Lazki A, Al-Toubi K, Bache F, Bonneville A, Goutorbe B, Huchon P, Unternehr P, Khanbari K (2010) Contrasted styles of rifting in the eastern Gulf of Aden: a combined wide-angle, multichannel seismic, and heat flow survey. Geochem Geophys Geosyst 11:1–14

  • Marco S, Klinger Y (2014) Review of on-fault palaeosismic studies along the Dead Sea fault, chapter 6, in Dead Sea transform fault system: reviews: 183–205, editors Garfunkel Z, Ben Avraham Z and Kagan E, Springer

  • Marco S, Rockwell T, Heimann A, Frieslander U (2005) Late Holocene activity of the Dead Sea transform revealed in 3D paleoseismic trenches on the Jordan Gorge segment. Earth Planetary Science Letters 234:189–205

    Google Scholar 

  • Masson F, Hamiel Y, Agnon A, Klinger Y, Deprez A (2015) Variable behavior of the Dead Sea Fault along the southern Araba segment from GPS measurements. C R Geosci 347:161–169

    Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138

    Google Scholar 

  • Meghraoui, M. (2015) Paleoseismic history of the Dead Sea fault zone. In Encyclopedia of Earthquake Engineering: https://doi.org/10.1007/978-3-642-36197-5_40-1

    Google Scholar 

  • Merghelani H M (1981) Seismicity of the Yanbu region Kingdom of Saudi Arabia. U.S. Geological survey, Saudi Arabia project report 371, technical records 16

  • Mokhtari M, Fard I, Hessami K (2008) Structural elements of the Makran region, Oman Sea and their potential relevance to tsunamigenisis. Nat Hazards 47:185–199

    Google Scholar 

  • Mooney W, Gettings ME, Blank HR, Healy JH (1985) Saudi Arabian seismic deep refraction profile: a travel time interpretation of crustal and upper mantle structure. Tectonophysics 111:173–246

    Google Scholar 

  • Musson RMW (2009) Subduction in the western Makran: the historian’s contribution. J Geol Soc, Lond 166:387–391

    Google Scholar 

  • Nemer T, Meghraoui M (2006) Evidence of coseismic ruptures along the Roum fault (Lebanon): a possible source for the AD 1837 earthquake. J Struct Geol 28:1483–1495

    Google Scholar 

  • Nemer T, Gomez F, Al Haddad S, Tabet C (2008) Coseismic growth of sedimentary basins along the Yammouneh strike-slip fault (Lebanon). Geophys J Int 175:1023–1039

    Google Scholar 

  • Niemi TM, Zhang H, Atallah M, Harrison JBJ (2001) Late Pleistocene and Holocene slip rate of the northern Wadi Araba fault, Dead Sea transform, Jordan. J Seismol 5:449–474

    Google Scholar 

  • Onur T, Gok R, Abdulnaby W, Mahdi H, Numan NMS, Al-Shukri H, Shakir AM, Chlaib HK, Ameen TH, Abd NA (2017) A comprehensive earthquake catalogue for Iraq in terms of moment magnitude. Seismol Res Lett, Online Publ 88:798–811

    Google Scholar 

  • Page WD, Anttonen G, Latham GV (1978) The Makran coast of Iran, a possible seismic gap, proceedings of conference VI: methodology for identifying seismic gaps and soon-to-break gaps. USGS Open file report 78-943:611–634

    Google Scholar 

  • Palano M, Paola Imprescia P, Gresta S (2013) Current stress and strain-rate fields across the Dead Sea fault system: constraints from seismological data and GPS observations. Earth Planet Sci Lett 369–370:305–316

    Google Scholar 

  • Pallister JS (1984) Explanatory notes to the geologic map of Al Lith quadrangle, sheet 20 MD, Kingdom of Saudi Arabia: Saudi Arabia Deputy Ministry for mineral resources, Open File Report USGS-OF-04-8

  • Pararas-Carayannis G (2004) Seismo-dynamics of compressional tectonic collision-potential for tsunami genesis along boundaries of the Indian, Eurasian and Arabian plates. Abstract submitted to the international conference HAZARDS, Hyderabad, India, 2-4 Dec. 2004

  • Peyret DY, Hessami K, Regard V, Bellier P, Vernant P, Daigni’eres M, Nankali H, Van Gorp S, Goudarzi M, Ch’ery J, Bayer R, Rigoulay M (2009) Present-day strain distribution across the Minab-Zendan-Palami fault system from dense GPS transects. Geophys J Int 179:751–762

    Google Scholar 

  • Poirier JP, Taher MA (1980) Historical seismicity in the near and Middle East, North Africa, and Spain from Arabic documents (VIIth-XVIIth century). Bull Seismol Soc Am 70:2185–2201

    Google Scholar 

  • Quittmeyer RC (1979) Seismicity variations in the Makran region of Pakistan and Iran: relation to great earthquakes. Pure Appl Geophys 117:1212–1228

    Google Scholar 

  • Ramsay CR, Drysdall AR, Clark MD (1986) Felsic plutonic rocks of the Midyan region, Kingdom of Saudi Arabia—I, distribution, classification, and resource potential, In, Drysdall AR, Ramsay CR, and Stoeser DB (eds), Felsic plutonic rocks and associated mineralization of the Kingdom of Saudi Arabia. Saudi Arabian deputy ministry for mineral resources bulletin 29: 63–77

  • Rasul NMA, Stewart ICF, Nawab ZA (2015) Introduction to the Red Sea: its origin, structure, and environment: in Rasul NMA, Stewart CF (eds) the Red Sea. Springer Earth System Sciences, Berlin, Heidelberg, pp 1–28

    Google Scholar 

  • Regard V, Bellier O, Thomas J-C, Bourl’es D, Bonnet S, Abbassi MR, Braucher R, Mercier J, Shabanian E, Soleymani SH, Feghhi KH (2005) Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in Southeast Iran. Geophys J Int 162:177–203

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergentav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411

    Google Scholar 

  • Roobol MJ, Stewart ICF (2009) Cenozoic faults and recent seismicity in northwest Saudi Arabia and the Gulf of Aqaba region. Saudi Geological Survey Technical Report SGSTR-2008-7

  • Sadeh M, Hamiel Y, Ziv A, Bock Y, Fang P, Wdowinski S (2012) Crustal deformation along the Dead Sea transform and the Carmel Fault inferred from 12 years of GPS measurements. J Geophys Res 117:B08410

    Google Scholar 

  • Salamon A, Avraham H, Garfunkel Z, Ron H (2003) Seismotectonics of Sinai subplate-eastern Mediterranean region. Geophys J Int 155:149–173

    Google Scholar 

  • Shearman DJ (1977) The geological evolution of southern Iran, the report of the Iranian Makran expedition. Geogr J 142:393–410

    Google Scholar 

  • Sneh A (1996) The Dead Sea rift: lateral displacement and down faulting phases. Tectonophysics 263:277–292

    Google Scholar 

  • Stoneley R (1974) Evolution of the continental margins bounding a former Tethys. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 889–903

    Google Scholar 

  • Sykes LR, Seeber L (1982) Great earthquakes and great asperities along the San Andreas fault, southern California (Abs.), EOS. Trans Am Geophys Union 63:1030–1041

    Google Scholar 

  • Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys J Int 156:506–526

    Google Scholar 

  • Tamsett D, Searle R (1990) Structure of Alula-Fartak fracture zone, Gulf of Aden. J Geophys Res 95:1239–1254

    Google Scholar 

  • Tavakoli B, Ashtiany MG (1999) Seismic hazard assessment of Iran. Ann Di Geofisica 42:1013–1021

    Google Scholar 

  • Tavakoli F, Walpersdorf A, Authemayou C, Nankali HR, Hatzfeld D, Tatar M, Djamour Y, Nilforoushan F, Cotte N (2008) Distribution of the right-lateral strike–slip motion from the main recent fault to the Kazerun fault system (Zagros, Iran): evidence from present-day GPS velocities. Earth Planet Sci Lett 275:342–347

    Google Scholar 

  • Vermeulen P, Kijko A (2017) More statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys, Publ Online 65:579–587. https://doi.org/10.1007/s11600-017-0048-3

    Article  Google Scholar 

  • Vernant PH, Nilforoushan F, Hatzfeld D, Abassi MR, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R, Tavakoli F, Chery J (2004) Present-day crustal deformation and plate kinematics in Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157:381–398

    Google Scholar 

  • Wetzler N, Marcos S, Heifetz E (2010) Quantitative analysis of seismogenic shear-induced turbulence in lake sediments. Geology 38:303–306

    Google Scholar 

  • Xu W, Dutta R, Johnsson S (2015) Identifying active faults by improving earthquake locations with InSAR data and Bayesian estimation: the 2004 Tabuk (Saudi Arabia) earthquake sequence. Bull Seismol Soc Am 105:765–775

    Google Scholar 

  • Yamini-Fard F, Hatzfeld D, Farahbod AM, Paul A, Mokhtari M (2007) The diffuse transition between the Zagros continental collision and the Makran oceanic subduction (Iran): microearthquake seismicity and crustal structure. Geophys J Int 170:182–194

    Google Scholar 

  • Zahran HM, Sokolov V, Roobol J, Stewart ICF, El-Hadidy SY, El-Hadidy M (2016) On the development of a seismic source zonation model for seismic hazard assessment in western Saudi Arabia. J Seismol 20:747–769

    Google Scholar 

  • Zilberman E, Amit R, Porat N, Enzel Y, Avner U (2005) Surface ruptures induced by the devastating 1068 AD earthquake in the southern Arava valley, Dead Sea rift, Israel. Tectonophysics 408:79–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Deif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hussain, I., Al-Shijbi, Y., Deif, A. et al. Developing a seismic source model for the Arabian Plate. Arab J Geosci 11, 435 (2018). https://doi.org/10.1007/s12517-018-3797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3797-7

Keywords

Navigation