Application of cubic spline in soil erosion modeling from Narmada Watersheds, India

Abstract

Soil erosion by water is ubiquitous, exhibits spatio-temporal variability, and is fundamental to determining sediment yield which is key to proper watershed management. In this study, we propose a relationship between the curve number and sediment yield index (SYI) using cubic splines. Using field data from four watersheds, the relation between observed and computed SYI is found to have a coefficient of determination (R2) value from 0.63 to 0.88 suggesting that such a relation can be used to determine SYI from the available CN value. It is found that cubic splines perform satisfactorily with Nash-Sutcliff efficiency ranging from 60.18 to 64.01%, absolute prediction error from 1.35 to 5.56%, integral square error from 1.21 to 5.82%, coefficient of correlation from 79.32 to 93.78%, and degree of agreement from 0.87 to 0.99%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Adinarayana J, Rama Krishna N (1995) An approach to land use planning in a hilly watershed using GIS. Land Degrad Rehabil 6(3):171–178

    Article  Google Scholar 

  2. Adinarayana J (1996) Prioritization of basins based on silt yield index an integrated approach, erosion and sediment yield: global and regional perspectives (Proceedings of the Exeter Symposium July 1996). IAHS Publ no 236, pp 549–554

  3. Adinarayana J, Gopal Rao K, Rama Krishna N, Venkatachalam P, Suri JK (1998) A site-specific systems-approach model for soil erosion and silt yield studies for hilly watershed management, Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes (Proceedings of a symposium held at Vienna, July 1998J. IAHS Publ. no. 249, pp 143–148

  4. AISLUS (1991) Methodology of Priority Delineation Survey, All India Soil & Land Use Survey Technical Bulletin 9, Department of Agriculture and Cooperation, India

  5. Amani M, Safaviyan A (2015) Sub-basins prioritization using morphometric analysis-remote sensing technique and GIS-Golestan-Iran. Int Let Nat Sci 38:56–65

    Google Scholar 

  6. Anthony VJ, Garrett JM (2005) Understanding Interobserver Agreement: The Kappa Statistic. Fam Med 37:360–363

    Google Scholar 

  7. Bali YP, Karale KL (1977) A sediment yield index as a criterion for choosing priority basins. Proceding of Erosion and solid matter transport in inland waters, Paris, pp 180–188

  8. Barth J, Kraft A, Kraft J (1976) Estimation of the liquidity trap using spline functions. Rev Econ Stat 58:218–222

    Article  Google Scholar 

  9. Bhuyan SJ, Marjen LJ, Koelliker JK, Harrington JA, Barnes PL (2002) Assessment of runoff and sediment yield using remote sensing, GIS and AGNPS. J Soil Water Conserv Soil Water Conserv Soc USA 57(6):351–363

    Google Scholar 

  10. Das RK (2012) Sediment yield estimation for watershed prioritization: a remote sensing study. Indian J Sci Technol 5(3):2374–2378

    Google Scholar 

  11. De Boor C (1978) A Practical guide to splines. Springer-Verlag, New York

    Google Scholar 

  12. Eubank RL (1984) Approximate regression models and splines. Communications in Statistics - Theo and Meth 13:433–484

    Article  Google Scholar 

  13. Fuller WA (1969) Grafted polynomials as approximating functions. Aust J Agic Econ 13:35–46

    Google Scholar 

  14. Gajbhiye S, Sharma SK (2012) Land use and land cover change detection through remote sensing using multi-temporal satellite data. Int J Geo Geosci 3(1):89–96

    Google Scholar 

  15. Gajbhiye S, Mishra SK, Pandey A (2013) Effect of seasonal/monthly variation on runoff curve number for selected watersheds of Narmada Basin. Int J Env Sci 3(6):2019–2030

    Google Scholar 

  16. Gajbhiye S, Mishra SK, Pandey A (2014a) Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective. Appl Water Sci 4(1):51–61

    Article  Google Scholar 

  17. Gajbhiye S, Mishra SK, Pandey A (2014b) Hypsometric analysis of Shakkar River catchment through geographical information system. J Geol Soc India, (SCI-IF 0.596) 84(2):192–196

    Article  Google Scholar 

  18. Gajbhiye S, Mishra SK, Pandey A (2014c) Relationship between SCS-CN and sediment yield. Appl Water Sci 4(4):363–370

    Article  Google Scholar 

  19. Gajbhiye S, Sharma SK, Meshram C (2014d) Prioritization of watershed through sediment yield index using RS and GIS approach. Int J u e-Ser, Sci Tech 7(6):47–60

    Article  Google Scholar 

  20. Gajbhiye S, Mishra SK, Pandey A (2015) Simplified sediment yield index model incorporating parameter CN. Arab J Geosci 8(4):1993–2004

    Article  Google Scholar 

  21. GSI (2000) Jabalpur earth quack -22nd May 1997-A Geoscientific Study. GSI special publication No. 51. July 2000

  22. Hawkins RH (1973) Improved prediction of storm runoff from mountain watersheds. J Irrig Drain Div 99(4):519–523

    Google Scholar 

  23. Hawkins RH (1978) Runoff curve numbers with varying site moisture. J Irrig Drain Div 104(4):389–398

    Google Scholar 

  24. Holt JN, Jupp DLB (1978) Free-knot spline inversion of a Fredholm integral equation from astrophysics. J Inst Math Applics 21:429–443

    Article  Google Scholar 

  25. Javed A, Tanzeel K, Aleem M (2016) Estimation of sediment yield of Govindsagar Catchment, Lalitpur District, (U.P.), India, using remote sensing and GIS techniques. J Geogr Inf Syst 8:595–607

    Google Scholar 

  26. Jupp DLB, Vozoff K (1975) Stable iterative methods for the inversion of geophysical data. Geophys J R Astron Soc 42:957–976

    Article  Google Scholar 

  27. Kothyari UC, Jain SK (1997) Sediment yield estimation using GIS. Hydrol Sci 42(6):833–843

    Article  Google Scholar 

  28. Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  Google Scholar 

  29. Lechner JA, Reeve CP, Spiegelman CH (1982) An implementation of the Scheff; approach to calibration using spline functions, illustrated by a pressure- volume calibration. Technometrics 24:229–234

    Article  Google Scholar 

  30. Meshram SG, Powar PL (2017) Piecewise regression using cubic spline-a case study. Int J Hyb Infor Tech 10(1):75–84

    Google Scholar 

  31. Meshram SG, Sharma SK, Tignath S (2017a) Application of remote sensing and geographical information system for generation of runoff curve number. Appl Water Sci 7:1773–1779

    Article  Google Scholar 

  32. Meshram SG, Powar PL, Singh VP (2017b) Modelling soil erosion from a watershed using cubic splines. Arab J Geosci 10:155–168. https://doi.org/10.1007/s12517-017-2908-1

    Article  Google Scholar 

  33. Mishra SK, Singh VP (2003) Derivation of SCS-CN parameter S from linear Fokker Planck equation. Act Geophy Polo 51(2):180–202

    Google Scholar 

  34. Mishra SK, Singh VP (2004) Long-term hydrologic simulation based on the soil conservation service curve number. Hydrol Process 18(7):1291–1313

    Article  Google Scholar 

  35. Mishra SK, Gajbhiye S, Pandey A (2013) Estimation of design runoff curve numbers for Narmada watersheds (India). J Appl Water Engg Resea 1(1):69–79

    Article  Google Scholar 

  36. Mockus V (1949) Estimation of total (peak rates of) surface runoff for individual storms. Exhibit A of Appendix B, Interim Survey Rep. Grand (Neosho) River Watershed, USDA, Washington, D.C.

    Google Scholar 

  37. Natural Resources Conservation Service (NRCS) (2001) “Section 4: Hydrology” National Engineering Handbook, Natural Resources Conservation Service. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  38. Pal DK (1998) Remote Sensing and GIS in study of land use and soil in some watersheds. Unpublished Ph.D. Thesis, Dep. Agri. Food. Engg, IIT, Kharagpur (India)

  39. Pandey A, Chowdary VM, Mal BC (2007) Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and Remote Sensing. Water Resour Manag (Springer) 21(4):729–746

    Article  Google Scholar 

  40. Poirier DJ (1975) On the use of Cobb-Douglas splines. Int Econ Rev 16:733–744

    Article  Google Scholar 

  41. Pyasi S, Singh JK (2004) Sediment prediction by modelling runoff sediment process. In J Soil Con 32(2):100–107

    Google Scholar 

  42. Rallison RE (1980) Origin and evolution of the SCS runoff equation. Proceedings of ASCE irrigation and drainage division symposium on watershed management, ASCE, New York, NY, 2:912–924

  43. Ratnam N, Srivastava YK, Venkateswara Rao V, Amminedu E, KSR M (2005) Check dam positioning by prioritization of micro-watershed using SYI model and morphometric analysis-Remote sensing and GIS perspective. J Indian Soc Remote Sens 33(1):25–38

    Article  Google Scholar 

  44. Rice JR (1968) Characterization of Chebyshev approximations by splines. SIAM J Numer Anal 4:557–565

    Article  Google Scholar 

  45. SCS (1956, 1964, 1969, 1971, 1972, 1985, 1993) Hydrology, National Engineering Handbook, Supplement A, Section 4, Chapter 10, Soil Conservation Service, USDA, Washington, DC

  46. Sharma SK, Gajbhiye S, Tignath S (2013a) Application of principal component analysis in grouping geomorphic parameters of Uttela watershed for hydrological modelling. Int J Remote Sen Geosci 2(6):63–70

    Google Scholar 

  47. Sharma SK, Tignath S, Gajbhiye S, Patil R (2013b) Use of geographical information system in hypsometric analysis of Kanhiya Nala watershed. Int J Remote Sen Geosci 2(3):30–35

    Google Scholar 

  48. Sharma SK, Gajbhiye S, Tignath S (2014a) Application of principal component analysis in grouping geomorphic parameters of a watershed for hydrological modelling. Appl Water Sci 5(1):89–96

    Article  Google Scholar 

  49. Sharma SK, Gajbhiye S, Nema RK, Tignath S (2014b) Assessing vulnerability to soil erosion of a watershed of tons river basin in Madhya Pradesh using remote sensing and GIS. Int J Env Res Dev 4(2):153–164

    Google Scholar 

  50. Shit PK, Nandi AS, Bhunia GS (2015) Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Model Earth Syst Environ 1:28

    Article  Google Scholar 

  51. Singh VP, Yadava RN (2003) Watershed management. Allied publisher private limited. ISBN 81-7764-545-5

  52. Soulis KX, Valiantzas JD (2012) SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—the two-CN system approach. Hydrol Earth Syst Sci 16:1001–1015

    Article  Google Scholar 

  53. Srivastava RK, Imtiyaz M (2016) Testing of coupled SCS curve number model for estimating runoff and sediment yield for eleven watersheds. J Geol Soc India 88(5):627–636

    Article  Google Scholar 

  54. Vinod VH, Singh VK, Jeyaseelan AT (2010) Sediment Yield Index and Morphometric Index based Prioritization of Upper Subarnarekha Watershed. Int J Earth Sci Eng 3(4):497–511

    Google Scholar 

  55. Wahba G, Wendelberger J (1980) Some new mathematical methods for variational objective analvsis using splines and cross validation. Mon Weather Rev 108(1122–1):143

    Google Scholar 

  56. Williams JD, LaSeur WV (1976) Water yield model using SCS curve numbers. J Hydraul Div 102(9):1241–1253

    Google Scholar 

  57. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation planning. U. S. Dep. Agri., USDA handbook, No. 537, Washington D C

  58. Wold S (1971) Analysis of kinetic data by means of spline functions. Chem Scripta 1:97–102

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers for their valuable suggestions and critical comments to improve the quality of this paper. The first author is thankful to UGC-New Delhi for providing financial support under the scheme of Dr. D.S. Kothari Postdoctoral Fellowship (DSKPDF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarita Gajbhiye Meshram.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meshram, S.G., Powar, P.L., Singh, V.P. et al. Application of cubic spline in soil erosion modeling from Narmada Watersheds, India. Arab J Geosci 11, 362 (2018). https://doi.org/10.1007/s12517-018-3699-8

Download citation

Keywords

  • Cubic spline interpolation
  • Watershed
  • Runoff curve number (CN)
  • Sediment yield index (SYI)