Skip to main content

Advertisement

Log in

Variability of crack initiation and crack damage for various rock types

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The failure process of rocks can section the stress-strain relation to several stages from crack closure to crack propagation. Two important threshold stresses can be identified, which are normally referred to as crack initiation stress (CI) and crack damage stress (CD). The effects of rock type, grain size, porosity, and confinement on these two stresses are investigated in this study by statistically analyzing 926 sets of test data which are collected from previously published compressive tests. The CI and CD to peak strength ratios are found to be in a narrow range for various rock types in terms of igneous, metamorphic, and sedimentary, indicating that the ratios of the two stress against the peak strength are not greatly influenced by the rock type. The CI and CD decrease as the grain size increases for igneous rocks in uniaxial compression. The two threshold stresses for low porosity igneous rocks are not significantly affected by porosity. However, the two stresses show an obvious decreasing trend with the increase in the porosity for high porosity sedimentary rocks. The CI to peak strength ratio in confined condition is much higher than that in unconfined condition. In addition, the ratio under confinement higher than 50 MPa is much increased when compared to that under confinement lower than 50 MPa. The results imply that the confining stress constrains the microcracking process. Overall, the CI and CD to peak strength ratios are both in a narrow range, which may be used as an intrinsic property of rocks to evaluate the damage/failure behavior of rocks in physical laboratory test and estimate the spalling strength of rock mass in underground openings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allaby A, Allaby M (1991) The concise Oxford dictionary of earth sciences. Oxford University Press, Oxford, p 410

    Google Scholar 

  • Amann F, Button EA, Evans KF, Gischig VS, Blumel M (2011) Experimental study of the brittle behavior of clay shale in rapid unconfined compression. Rock Mech Rock Eng 44(4):415–430

    Article  Google Scholar 

  • Andersson JC (2007) Rock mass response to coupled mechanical thermal loading: Äspö pillar stability experiment, Sweden. PhD thesis. Stockholm, Sweden. Royal Institute of Technology, pp.287

  • Andersson JC, Martin CD (2009) The Äspö pillar stability experiment: part I—experiment design. Int J Rock Mech Min Sci 46(5):865–878

    Article  Google Scholar 

  • Bieniawski ZT (1967) Mechanism of brittle fracture of rock. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–430

    Article  Google Scholar 

  • Brace WF, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953

    Article  Google Scholar 

  • Cai M (2010) Practical estimates of tensile strength and Hoek–Brown strength parameter m i of brittle rocks. Rock Mech Rock Eng 43(2):167–184

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Maejima T, Morioka H, Minami M (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41(5):833–847

    Article  Google Scholar 

  • Castro L (1996) Analysis of stress-induced damage initiation around deep openings excavated in a moderately jointed brittle rock mass. PhD Thesis. Toronto, Canada. University of Toronto, pp.470

  • Chang SH, Lee CI (2004) Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. Int J Rock Mech Min Sci 41(7):1069–1086

    Google Scholar 

  • Damjanac B, Fairhurst C (2010) Evidence for a long-term strength threshold in crystalline rock. Rock Mech Rock Eng 43:513–531

    Article  Google Scholar 

  • Diederichs MS (2007) The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling. Can Geotech J 44(9):1082–1116

    Article  Google Scholar 

  • Diederichs MS, Martin CD (2010) Measurement of spalling parameters from laboratory testing. ISRM International Symposium-EUROCK, Lausanne, Switzerland

  • Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41(5):785–812

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B, Read RS (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 35(2):222–233

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B (1999a) Effects of sample disturbance on the stress-induced microfracturing characteristics of brittle rock. Can Geotech J 36(2):239–250

    Article  Google Scholar 

  • Eberhardt E, Stimpson B, Stead D (1999b) Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32(2):81–99

    Article  Google Scholar 

  • Eloranta P (2006) Laboratory testing of gneissic rocks in Olkiluoto borehole Ol-KR24. Working report 2006–80. Posiva Oy, Olkiluoto, p 97

    Google Scholar 

  • Eloranta P, Hakala P (1998) Laboratory testing of Kivetty porphyritic granodiorite in borehole KI-KR10. POSIVA-98-49. Posiva Oy, Helsinki, p 120

    Google Scholar 

  • Eloranta P, Hakala M (1999a) Laboratory testing of Hästholmen equigranular rapakivi granite in borehole HH-KR6. POSIVA-99-47. Posiva Oy, Helsinki, p 154

    Google Scholar 

  • Eloranta P, Hakala M (1999b) Laboratory testing of Hästholmen pyterlite in borehole HH-KR6. POSIVA-99-26. Posiva Oy, Helsinki, p 183

    Google Scholar 

  • Eslami J, Hoxha D, Grgic D (2012) Estimation of the damage of a porous limestone using continuous wave velocity measurements during uniaxial creep tests. Mech Mater 49:51–65

    Article  Google Scholar 

  • Everitt RA, Lajtai EZ (2004) The influence of rock fabric on excavation damage in the Lac du Bonnett granite. Int J Rock Mech Min Sci 41(8):1277–1303

    Article  Google Scholar 

  • Fonseka GM, Murrell SAF, Barnes P (1985) Scanning electron-microscope and acoustic-emission studies of crack development in rocks. Int J Rock Mech Min Sci 22(5):273–289

    Article  Google Scholar 

  • Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39(3):335–354

    Article  Google Scholar 

  • Gorski B, Anderson T, Conlon B (2009) Laboratory geomechanical strength testing of DGR-1 & DGR-2 Core. TR-07-03. DGR Site Characterization Document, pp.139

  • Gorski B, Anderson T, Conlon B (2010) Laboratory geomechanical strength testing of DGR-3 and DGR-4 Core. TR-08-24. DGR Site Characterization Document, pp.183

  • Hakala M, Heikkilä E (1997) Laboratory testing of Olkiluoto mica gneiss in borehole OL-KR10. POSIVA-97-07e. Posiva Oy, Helsinki, p 390

    Google Scholar 

  • Hatzor YH, Palchik V (1997) The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. Int J Rock Mech Min Sci 34(5):805–816

    Article  Google Scholar 

  • Heikkilä E, Hakala M (1998a) Laboratory testing of Kivetty granite in borehole KI-KR 10. POSIVA-98-21e. Posiva Oy, Helsinki, p 166

    Google Scholar 

  • Heikkilä E, Hakala M (1998b) Laboratory testing of Romuvaara tonalite gneiss in borehole RO-KR10. POSIVA-98-06e. Posiva Oy, Helsinki, p 167

    Google Scholar 

  • Huang D, Huang RQ, Zhang YX (2012) Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression. Chin J Rock Mech Eng 31(2):245–255

    Google Scholar 

  • Jacobsson L (2004a) Forsmark site investigation: borehole KFM01A: uniaxial compression test of intact rock. SKB P-04-223. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 68

    Google Scholar 

  • Jacobsson L (2004b) Forsmark site investigation: borehole KFM03A: uniaxial compression test of intact rock. SKB P-04-225. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 75

    Google Scholar 

  • Jacobsson L (2004c) Forsmark site investigation: borehole KFM04A: uniaxial compression test of intact rock. SKB P-04-226. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 69

    Google Scholar 

  • Jacobsson L (2004d) Oskarshamn site investigation: borehole KLX04A: triaxial compression test of intact rock. SKB P-04-262. Stockholm. Swedish Nuclear Fuel and Waste Management Co, pp.54

  • Jacobsson L (2005a) Forsmark site investigation: borehole KFM05A: triaxial compression test of intact rock. SKB P-05-100. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 40

    Google Scholar 

  • Jacobsson L (2005b) Oskarshamn site investigation: borehole KLX03A: triaxial compression test of intact rock. SKB P-05-96. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 48

    Google Scholar 

  • Jacobsson L (2006a) Forsmark site investigation: borehole KFM09A: Triaxial compression test of intact rock. SKB P-06-26. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 32

    Google Scholar 

  • Jacobsson L (2006b) Oskarshamn site investigation: borehole KLX11A: uniaxial compression test of intact rock. SKB P-06-270. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 34

    Google Scholar 

  • Jacobsson L (2006c) Oskarshamn site investigation: borehole KLX12A: uniaxial compression test of intact rock. SKB P-06-73. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 59

    Google Scholar 

  • Katz O, Reches Z (2004) Microfracturing, damage, and failure of brittle granites. J Geophys Res Solid Earth 109(B01206):1–13

    Google Scholar 

  • Klein E, Reuschle T (2004) A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. Int J Rock Mech Min Sci 41(6):975–986

    Article  Google Scholar 

  • Lajtai EZ (1974) Brittle fracture in compression. Int J Fract 10(4):525–536

    Article  Google Scholar 

  • Lan HX, Martin CD, Hu B (2010) Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J Geophys Res Solid Earth 115(B01202):1–14

    Google Scholar 

  • Lei XL, Kusunose K, Nishizawa O, Cho A, Satoh T (2000) On the spatio-temporal distribution of acoustic emissions in two granitic rocks under triaxial compression: the role of pre-existing cracks. Geophys Res Lett 27(13):1997–2000

    Article  Google Scholar 

  • Li Y, Chen YF, Zhang GJ, Liu Y, Zhou CB (2017) A numerical procedure for modeling the seepage field of water-sealed underground oil and gas storage caverns. Tunn Undergr Space Technol 66:56–63

  • Liang CY, Li X, Wang SX, Li SD, He JM, Ma CF (2012) Experimental investigations on rate-dependent stress-strain characteristics and energy mechanics of rock under uniaxial compression. Chin J Rock Mech Eng 31(9):1830–1838

    Google Scholar 

  • Martin CD (1993) The strength of massive Lac du bonnet granite around underground openings. PhD Thesis. Winnipeg. Manitoba. University of Manitoba, pp.304

  • Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34(5):698–725

    Article  Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac Du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659

    Article  Google Scholar 

  • Martin CD, Christiansson R (2009) Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int J Rock Mech Min Sci 46(2):219–228

    Article  Google Scholar 

  • Martin CD, Stimpson B (1994) The effect of sample disturbance on laboratory properties of Lac Du Bonnet granite. Can Geotech J 31:692–702

    Article  Google Scholar 

  • Martin CD, Kaiser PK, Mccreath DR (1999) Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J 36(1):136–151

    Article  Google Scholar 

  • Nicksiar M, Martin CD (2012) Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech Rock Eng 45(4):607–617

    Article  Google Scholar 

  • Nicksiar M, Martin CD (2013) Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng Geol 154:64–76

    Article  Google Scholar 

  • Palchik V, Hatzor YH (2002) Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones. Eng Geol 63(3–4):233–245

    Article  Google Scholar 

  • Peng J, Rong G, Cai M, Wang XJ, Zhou CB (2014) An empirical failure criterion for intact rocks. Rock Mech Rock Eng 47(2):347–356

    Article  Google Scholar 

  • Peng J, Wong LNY, Teh CI (2017) Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J Geophys Res: Solid Earth 122(2):1054–1073

  • Rojat F, Labiouse V, Kaiser PK, Descoeudres F (2009) Brittle rock failure in the Steg lateral adit of the Lötschberg base tunnel. Rock Mech Rock Eng 42(2):341–359

    Article  Google Scholar 

  • Stacey TR (1981) A simple extension strain criterion for fracture of brittle rock. Int J Rock Mech Min Sci 18(6):469–474

    Article  Google Scholar 

  • Tang CA, Liu H, Lee PKK, Tsui Y, Tham LG (2000) Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity. Int J Rock Mech Min Sci 37(4):555–569

    Article  Google Scholar 

  • Xue L, Qin S, Sun Q, Wang Y, Lee LM, Li W (2014) A study on crack damage stress thresholds of different rock types based on uniaxial compression test. Rock Mech Rock Eng 47(4):1183–1195

    Article  Google Scholar 

  • Zhao XG, Cai M, Wang J, Ma LK (2013) Damage stress and acoustic emission characteristics of the Beishan granite. Int J Rock Mech Min Sci 64:258–269

    Google Scholar 

  • Zhao XG, Cai M, Wang J, Li PF (2015a) Strength comparison between cylindrical and prism specimens of Beishan granite under uniaxial compression. Int J Rock Mech Min Sci 76:10–17

    Google Scholar 

  • Zhao XG, Cai M, Wang J, Li PF, Ma LK (2015b) Objective determination of crack initiation stress of brittle rocks under compression using AE measurement. Rock Mech Rock Eng 48:2473–2484

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for these financial supports

Funding

The research work presented in this paper is in part supported by the National Natural Science Foundation of China (Grant nos. 51609178, 51579189, and 41772305), the China Postdoctoral Science Foundation (Grant no. 2015M582273), the Nature Science Foundation of Hubei Province (Grant no. 2018CFB593), and the Open-end Research Fund of the State Key Laboratory for Geomechanics and Deep Underground Engineering (Grant no. SKLGDUEK1709)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiyong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Rong, G. & Jiang, M. Variability of crack initiation and crack damage for various rock types. Arab J Geosci 11, 265 (2018). https://doi.org/10.1007/s12517-018-3618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3618-z

Keywords

Navigation