Advertisement

Geomorphology of the Al Wahbah crater at Harrat Kishb west of the Kingdom of Saudi Arabia

  • Mohamed Al-Abbas Daoudi
  • Mahmoud Ibrahim Al-Doaan
  • Abdlhamed Jamil
Original Paper
  • 62 Downloads

Abstract

The main objective of this research is to conduct a geomorphic study of the Al Wahbah crater located in Harrat Kishb, west of Saudi Arabia. The crater is considered as one of the well-known national tourist places, which attracted many visitors a year. This study handles the geomorphic framework of the crater to draw a digital elevation model. It is a step to designate slopes of the crater and its surroundings, as well as other morphometric characteristics. The lithologic units of the crater and its surroundings have been updated using geologic maps and SPOT 5 (2.5 m) satellite image. The research aims also at analyzing the deposits of the crater floor through mechanical analysis of the field-collected samples. In this process, the circular floor of the crater had been classified into two halves. Then, field samples were collected from the radius of the crater at three places apart from each other. The lab analyses include porosity and hydraulic conductivity. The results of analyzing these samples disclosed high percentages of porosity. The porosity of all samples is homogeneous as well in the samples collected from the three profiles of different depths. As well the mechanical analysis indicates a regular and homogeneous grain size distribution. The current study elucidates the impact of the mutual interaction between the natural variable forming the Al Wahbah crater geomorphic system. The interaction resulted in a dynamic and complex geomorphic system along with distinctive associations of landforms and surficial deposits. The study is considered among the pioneer research efforts that tackled the Al Wahbah crater from different scientific and applications perspectives.

Keywords

Al Wahbah crater Harrat Kishb Caldera geomorphology Sediments 

Notes

Acknowledgments

The research team would like to thank the Deanship of Scientific Research (DSR) at King Abdulaziz University for its financial support for this investigation (Project Number G-139-125-37). Thanks are extended to Brigadier General Samii Al-Tourqi, Taif General Civil Defense, Brigadier Kalid Al-Fair, Al-Mouoh Civil Defense. Deep thanks go to soldier Deeb Al-Otabi, HafurKashub Civil Defense Center, for his help during fieldwork. Thanks go to the technicians who helped in completing soil and mineral analysis. Many thanks are due to all the people who supported or helped during the conduct of the fieldwork.

References

  1. Abdel Wahab A, Abul Maaty MA, Stuart FM, Awad H, Kafafy A (2014) The geology and geochronology of Al Wahbah maar crater, Harrat Kishb, Saudi Arabia. Quat Geochronol 21:70–76.  https://doi.org/10.1016/j.quageo.2013.01.008 CrossRefGoogle Scholar
  2. Alwelaie A (1996) Geology and geomorphology of Saudi Arabia. King Fahad National Library, 526 pp (in Arabic)Google Scholar
  3. Bou Kheir R, Girard M-C, Khawlie M, Abadallah C (2001) Erosion hydrique des sols dans les milieux méditerranéens: une revue bibliographique. Etude et gestion des sols, 8(4):231–245Google Scholar
  4. Bou Kheir R, Chorowicz J, Abdallah C, Dhont D (2008) Soil and bedrock distribution estimated from gully form and frequency: A GIS-based decision-tree model for Lebanon. Geomorphology 93, 482–492Google Scholar
  5. Brown GF, Dwight SL, Curtis HA (1989) Geology of the Arabian Peninsula. Shield Area of Western Saudi Arabia. U.S. Geological Survey Professional Paper 560-A, US Government Printing Office, WashingtonGoogle Scholar
  6. Camp VE, Hooper PR, Roobol MJ, White DL (1987) The Madinah eruption, Saudi Arabia: magma mixing and simultaneous extrusion of three basaltic chemical types. Bull Volcanol 49:489–508.  https://doi.org/10.1007/BF01245475 CrossRefGoogle Scholar
  7. Camp VE, Roobol MJ, Hooper PR (1992) The Arabian continental alkali basalt province: part III. Evolution of Harrat Kishb, Kingdom of Saudi Arabia. Geol Soc Am Bull 104:379–396.  https://doi.org/10.1130/0016-7606(1992)104<0379:TACABP>2.3.CO;2 CrossRefGoogle Scholar
  8. Chaatal M (1996) Le bassin versant de l’oued El Djemaa, évolution morphodynamique et perspectives d’aménagement : approche méthodologique. Thèse de Magister en géomorphologie, Université des Sciences et de la Technologie Houari Boumédiène, Faculté des Sciences de la Terre et de Géographie et d’Aménagement de Territoire, Alger, p 136Google Scholar
  9. Daoudi M (2008) Analyse et prédiction de l’érosion ravinante par une approche probabiliste sur des données multisources. Cas du bassin versant de l’oued Isser, Algérie. PhD thesis in Sciences, University of Liège, Faculty of Sciences, Department of Geography, BelgiumGoogle Scholar
  10. Degeai JP, Peulvast JP (2006) Calcul de l’érosion a long terme en région de socle autour de grands astroblèmes du Quebec et de France. Géog Phys Quatern 60(2):131–148.  https://doi.org/10.7202/016825ar Google Scholar
  11. Gomer D (1994) Ecoulement et érosion dans des petits bassins versants à sols marneux sous climat semi-aride méditerranéen. Publié par: Projet pilote d’aménagement intégré du bassin versant de l’oued Mina c/o Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) 294 pGoogle Scholar
  12. Harrat Kishb (1973) Topographic map of aerial survey department ar riyad, KSAGoogle Scholar
  13. Ionita I (2006) Gully development in the Moldavian plateau of Romania. Catena 68:133–140.  https://doi.org/10.1016/j.catena.2006.04.008 CrossRefGoogle Scholar
  14. Kingdom of Saudi Arabia (2012) Facts and numbers. Saudi Geological Survey, First Version, 116 ppGoogle Scholar
  15. Kirkby MJ, Bull LJ (2000) Some factors controlling gully growth in fine-grained sediments: a model applied in Southeast Spain. Catena 40:127–146.  https://doi.org/10.1016/S0341-8162(99)00077-6 CrossRefGoogle Scholar
  16. Mirza M (2008) Structural and morphological aspects of the lava field (Harrat) in western Saudi Arabia with special reference to the central basaltic area (case study: Harrat Kushb). Educ Soc Hum J Umm Al-Qura Univ 20:297–382Google Scholar
  17. Moufti MR, Németh K, El-Masry N, Qaddah A (2013) Geoheritage values of one of the largest maar craters in the Arabian Peninsula: the Al Wahbah Crater and other volcanoes (Harrat Kishb, Saudi Arabia). Cent Eur J Geosci 5(2):254–271.  https://doi.org/10.2478/s13533-012-0125-8 Google Scholar
  18. Radoane M, Ichim I, Radoane N (1995) Gully distribution and development in Moldavia, Romania. Catena 24:127–146.  https://doi.org/10.1016/0341-8162(95)00023-L CrossRefGoogle Scholar
  19. Roobol MJ, Camp VE (1991a) Geographic map of the Cenozoic lava field of Harrat Kishb, Kingdom of Saudi Arabia. DGMR-TR-91-5Google Scholar
  20. Roobol MJ, Camp VE (1991b). Geology of the Cenozoic lava field of Harrat Kishb, Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources, Geoscience Map GM-132, scale 1: 250,000, with text. [Previously released as Saudi Arabian Directorate General of Mineral resources, Open-File Report DGMR-OF-10-5, 65 pp., 1989b]Google Scholar
  21. Roobol MJ, Pint JJ, Al-Shanti MA, Al-Juid AJ, Al-Amoudi SA, Pint S (2002) Preliminary survey for lava-tube caves on Harrat Kishb, KSA. Open-File Report SGS, Saudi Geological SurveyGoogle Scholar
  22. Roose E (1994) Introduction à la gestion conservatoire de l'eau, de la biomasse et de la fertilité des sols (GCES). Bulletin pédologique, FAOGoogle Scholar
  23. Sahl M, Smith JW (1986) Geology of the Al Muwayh Quadrangle Sheet 22E. Saudi Arabian Deputy Ministry for Mineral Resources, Kingdom of Saudi Arabia. Geoscience Map GM-88, 1:250.000 scale with textGoogle Scholar
  24. Sanlaville P (1992) Changements climatiques dans la péninsule arabique durant le Pléistocène supérieur et l'Holocène. In: Paléorient, Vol. 18, N°1, pp. 5–26.  https://doi.org/10.3406/paleo.1992.4560
  25. Sari D (1977) L’homme et l’érosion dans l’Ouarsenis « Algérie », Société Nationale d’Edition et de Diffusion, p 623Google Scholar
  26. Srivastava N, Varatharajan I (2016) Geomorphology of Lowell crater region on the Moon. Icarus 266:44–56.  https://doi.org/10.1016/j.icarus.2015.11.013 CrossRefGoogle Scholar
  27. Thomas H et al (1998) First Pleistocene faunas from the Arabian Peninsula: an Nafud desert, Saudi Arabia. C RAcad Sci 326:145–152Google Scholar
  28. Tricart J (1978) Géomorphologie applicable. Masson, ParisGoogle Scholar
  29. Tricart J (1965) Principes et méthodes de la géomorphologie, Paris: Masson et Cie, EditeursGoogle Scholar
  30. Valentin C, Poesen J, Li Y (2005) Gully erosion: impacts, factors and control. Catena 63:132–153.  https://doi.org/10.1016/j.catena.2005.06.001
  31. Vandekerckhove L, Poesen J, Oostwoud Wijdenes D, Gyssels G, Beuselinck L, de Luna E (2000) Characteristics and controlling factors of bank gullies in two semi-arid Mediterranean environments. Geomorphology 33:37–58.  https://doi.org/10.1016/S0169-555X(99)00109-9 CrossRefGoogle Scholar
  32. Vanwalleghem T, Poesen J, Nachtergaele J, Verstraeten G (2005) Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils. Geomorphology 69:76–91.  https://doi.org/10.1016/j.geomorph.2004.12.003 CrossRefGoogle Scholar
  33. Vanwalleghem T, Van Den Eeckhaut M, Poesen J, Deckers J, Nachtergaele J, Van Oost K, Slenters C (2003) Characteristics and controlling factors of old gullies under forest in a temperate humid climate: a case study from the Meerdaal Forest (Central Belgium). Geomorphology 56:15–29.  https://doi.org/10.1016/S0169-555X(03)00043-6 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Mohamed Al-Abbas Daoudi
    • 1
  • Mahmoud Ibrahim Al-Doaan
    • 1
  • Abdlhamed Jamil
    • 1
  1. 1.Department of Geography & GIS, Faculty of Arts and HumanitiesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations