Skip to main content

Advertisement

Log in

Petrogenesis of the Darvazeh mafic-intermediate intrusive bodies, Qorveh, Sanandaj-Sirjanzone, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Darvazeh intrusion in the northern Sanandaj-Sirjan zone in the Alpine-Himalayan orogenic belt is composed of olivine gabbro, gabbroic diorite and granitoid units that intruded Jurassic metamorphic rocks. Field relations, textures, and whole rock geochemistry indicate that most of the mafic to intermediate composition rocks are not cumulates and instead represent liquid compositions. The tholeiitic (or ferroan) gabbros and magnesian gabbroic diorites evolved along liquid lines of descent and have different parental magmas. This conclusion is based on separate trends, often with overlapping MgO contents, for Si, Fe, Ti, Ni, Cr, Zn, Cu and Sr. The mineralogy (late versus early magnetite and contrasting proportions of magmatic amphibole) of the two suites are also slightly different as is the trace element patterns (for example Th, U, Ti and Sr). The Mg# of mafic-intermediate rocks ranges from 46 to 73, implying that the ultimate source for the most mafic rocks was in the mantle, not the crust. Flat HREE patterns, Sm/Yb ratios (<2) show that melting occurred in the shallow mantle, above the stability field of garnet. Small negative Nb-Ta-Ti anomalies and enrichments of Cs, Rb, Pb, Pb, and Sr on mantle-normalized trace element diagrams are consistent with a subduction zone source for both the tholeiitic gabbros and the magnesian gabbroic diorites. Hence, we conclude that the parental mafic magmas were generated by partial melting of spinel peridotite in the mantle wedge above a subducting slab of oceanic lithosphere. However, the composition of plagioclase-olivine pairs suggest the gabbroic magmas were not water-rich, and their high Fe/Mg and Ti/V ratios show they were relatively reduced compared to typical arc magmas. For the gabbros, melting may have been initiated by decompression in an intra-arc extensional environment caused by slab roll back or oblique subduction that partially separated the Sanandaj-Sirjan zone from the Central Iran block. Components from the subduction fluid are smaller than in the subsequent gabbroic diorites which have more typical arc compositions. These mafic magmas rose and fractionated on different paths controlled by water content and fO2, with the gabbros following reduced Fe-enrichment trends and the magnesian gabbroic diorites following more oxidized trends. The country rocks, plate reconstructions, and trace element systematics (including high Th/La ratios) show that the arc was underlain by continental crust that was assimilated into the mafic and intermediate magmas. Thus, the Darvazeh pluton reveals the complex nature of mafic intrusive rocks, which formed in a continental arc experiencing extension as the Neo-Tethys oceanic lithosphere subducted beneath the Central Iranian plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adams AJ, Christiansen EH, Kowallis BJ, Carranza-Castañeda O, Miller WE (2006) Contrasting silicic magma series in Miocene-Pliocene ash deposits in the San Miguel de Allende graben, Guanajuato, Mexico. J Geol 114:247–266

    Article  Google Scholar 

  • Ahmad T, Deb M, Tarney J, Raza M (2008) Proterozoic mafic volcanism in the Aravalli-Delhi Orogen, North-Western India: geochemistry and tectonic framework. Journal Geological Society India 72:93–111

    Google Scholar 

  • Ahmadi Khalaji AA, Esmaeily D, Valizadeh MV, Rahimpour-Bonab H (2007) Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 29:859–877

    Article  Google Scholar 

  • Ajirlu MS, Moazzen M, Hajialioghli R (2016) Tectonic evolution of the Zagros Orogen in the realm of the Neotethys between the Central Iran and Arabian plates: an ophiolite perspective. Central European Geology 59(1–4):1–27

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros Orogenic Belt of Iran. New data and interpretations Tectonophysics 229:211–238

    Article  Google Scholar 

  • Arculus RJ (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44:929–935

    Article  Google Scholar 

  • Ashwal LD, Wooden JL, Emslie RF (1986) Sr, Nd, and Pb isotopes in Proterozoic intrusives astride the Grenville front in Labrador: implications for crustal contamination and basement mapping. Geochim Cosmochim Acta 50:2571–2585

    Article  Google Scholar 

  • Azizi H, Najari M, Asahara Y, Catlos EJ, Shimizu M, Yamamoto K (2015a) U-Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj-Sirjan zone, Iran: evidence for intra-oceanic arc and back-arc tectonic regime in late Jurassic. Tectonophysics 660:47–64

    Article  Google Scholar 

  • Azizi H, Zanjefili-Beiranvand M, Asahara Y (2015b) Zircon U–Pb ages and petrogenesis of a tonalite-trondhjemite-granodiorite (TTG) complex in the northern Sanandaj-Sirjan zone, Northwest Iran: evidence for late Jurassic arc-continent collision. Lithos 216:178–195

    Article  Google Scholar 

  • Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14(10):848–851

    Article  Google Scholar 

  • Beccaluva L, Maccciotta G, Piccardo GB, Zeda O (1989) Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chem Geol 77:165–182

    Article  Google Scholar 

  • Berberian M (1995) Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224

    Article  Google Scholar 

  • Chauvel C, Hofmann AW, Vidal P (1992) HIMU-EM: the French Polynesian connection. Earth Planet Sci Lett 110:99–109

    Article  Google Scholar 

  • Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 296–331

    Google Scholar 

  • Coban H (2007) Basalt magma genesis and fractionation in collision and extension related provinces: a comparison between eastern, central and western Anatolia. Earth Sci Rev 80:219–238

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Faccini B, Gregoire M, O'Reilly SY, Powell W (2007) Amphiboles from supra subduction and intraplate lithospheric mantle. Lithos 99:68–84

    Article  Google Scholar 

  • Costa F, Dungan MA, Singer BS (2002) Hornblende-and phlogopite-bearing gabbroic xenoliths from Volcan San Pedro (36 ͦ S), Chilean Andes: evidence for melt and fluid migration and reactions in subduction-related plutons. J Petrol 43:219–241

    Article  Google Scholar 

  • Deevsalar R, Ghorbani MR, Ghaderi M, Ahmadian J, Murata M, Ozawa H, Shinjo R (2014) Geochemistry and petrogenesis of arc-related to intraplate mafic magmatism from the Malayer-Boroujerd plutonic complex, northern Sanandaj-Sirjan magmatic zone, Iran. Neues Jahrb Geol P-A 274(1):81–120

    Article  Google Scholar 

  • Ewart A, Bryan WB, Chappel BW, Rudnick RL (1994a) Regional geochemistry of the Lau-Tonga arc and backarc systems. In: Hawkins JW, Parson LM, Allen JF et al (eds) Proceedings of the ocean drilling program, Scientific results, vol 135, pp 385–425

    Google Scholar 

  • Ewart A, Hergt JM, Hawkins JW (1994b) Major element, trace element, and isotope (Pb, Sr, and Nd) geochemistry of site 839 basalts and basaltic andesites: implications for arc volcanism. In: Hawkins JW, Parson LM, Allan JF (ed), Proceedings of the Ocean Drilling Program. Scientific Results 135:519–531

  • Ewart A, Collerson KD, Regelous M, Wendt JI, Niu Y (1998) Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems: the role of varying mantle wedge composition in space and time. J Petrol 39:331–368

    Article  Google Scholar 

  • Fazlnia A, Schenk V, Straaten F, Mirmohammadi M (2009) Petrology, geochemistry, and geochronology of trondhjemites from the Qori complex, Neyriz, Iran. Lithos 112:413–433

    Article  Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522-523:122–149

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • GERM Partition coefficient database (2018). https://earthref.org/GERM/)

    Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 38:235–273

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contribution to arc magmatism in the Andes of southern Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Hole MJ, Saunders AD, Marriner GF, Tarney J (1984) Subduction of pelagic sediments: implications for the origin of Ce-anomalous basalts from the Mariana Islands. J Geol Soc Lond 141:453–472

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116(4):433–447

    Article  Google Scholar 

  • Hosseini M (1997) Geological map of Qorveh (scale 1:100.000). Geology survey of Iran

  • Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of tertiary mafic alkaline magmas in the Hocheifel, Germany. J Petrol 47:1637–1671

    Article  Google Scholar 

  • Kelemen P, Hanghoj K, Greene A (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier Pergamon, Oxford, pp 593–659

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Min 68:277–279

    Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms, recommendations of the IUGS subcommission on the systematics of igneous. Blackwell, Rocks

    Google Scholar 

  • Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC et al (1997) Nomenclature of amphiboles, additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Am Mineral 89:883–887

    Google Scholar 

  • Li C, Arndt NA, Tang REM (2015) Trace element indiscrimination diagrams. Lithos 232:76–83

    Article  Google Scholar 

  • MacDonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:82–133

    Article  Google Scholar 

  • Mahmoudi S, Corfu F, Masoudi F, Mehrabi B, Mohajjel M (2011) U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan zone, Iran. J Asian Earth Sci 41:238–249

    Article  Google Scholar 

  • Mazhari SA, Amini S, Ghalamghash J, Bea F (2011) Petrogenesis of granitic unit of Naqadeh complex, Sanandaj–Sirjan zone, NW Iran. Arab J Geosci 4:59–67

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distribution from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Mercer LT, Kowallis BJ, Christiansen EH, Miller WE, Carranza-Castañeda O, Israde-Alcántara I (2014) Geology of the Tierras Blancas area in the southeastern part of the Acambay graben, Central Mexico. Geol Soc of America Digital Map and Chart 18:46

    Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma/igneous rock system: Earth-Sci Rev 37: 215-224

  • Miyashiro A (1974) Volcanic rock series in Island Arcs and active continental margins. Am J Sci 274(4):321–355

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Mag 5:535–550

    Article  Google Scholar 

  • Nakajima T, Kamiyama H, Williams IS, Tani K (2004) Mafic rocks from the Ryoke Belt, southwest Japan: implications for cretaceous Ryoke/San-yo granitic magma genesis. Transaction of the Royal Society of Edinburgh. Earth Sci 95:249–263

    Google Scholar 

  • Nisbet EG, Pearce JA (1977) Clinopyroxene composition in mafic lavas from different tectonic settings. J Contrb Mineral Petrol 63:149

    Article  Google Scholar 

  • O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate margins. In: Thorpe RS (ed) Andesites. Wiley, London, pp 545–548

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100(1–4):14–48

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Pearce JA, Baker PE, Harvey PK, Luff IW (1995) Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath South Sandwich island arc. J Petrol 36:1073–1109

    Article  Google Scholar 

  • Pearce JA, Kempton PD, Nowell GM, Noble SR (1999) Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. J Petrol l40:1579–1611

    Article  Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Reagan MK, Hanan BB, Heizler MT, Hartman BS, Hickey-Vargas R (2008) Petrogenesis of volcanic rocks from Saipan and Rota, Mariana Islands, and implications for the evolution of nascent island arcs. J Petrol 49:441–464

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry, geochemistry of the crust, vol 2. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Şengör AMC (1984) The Cimmerideorogenic system and the tectonics of Eurasia. Geol Soci of Am Spec Paper 195:181–241

    Google Scholar 

  • Şengör AMC, Natalin BA (1996) Paleotectonic of Asia: fragments of a synthesis. In Yin, A., Harris on, T. M., (ed.) The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, pp 486-640

  • Sepahi AA (2008) Typology and petrogenesis of granitic rocks in the Sanandaj-Sirjan metamorphic belt, Iran: with emphasis on the Alvand plutonic complex. Neues Jb Miner Abh 247:295–312

    Google Scholar 

  • Shahbazi H, Siebel W, Pourmoafee M, Ghorbani M, Sepahi AA, Shang CK, Abedini MV (2010) Geochemistry and U-Pb zircon geochronology of the Alvand plutonic complex in Sanandaj-Sirjan zone (Iran): new evidence for Jurassic magmatism. J of Asian Earth Sci 39:668–683

    Article  Google Scholar 

  • Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  • Sklyarov EV, Gladkochub DP, Mazukabzov AM, Menshagin YV, Watanabe T, Pisarevsky SA (2003) Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton. Precambrian Res 122:359–376

    Article  Google Scholar 

  • Srivastava RK, Ahmad T (2008) Precambrian mafic magmatism in the Indian shield: an introduction. J Geol Soc India 72:9–13

    Google Scholar 

  • Sun SS (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos Trans R Soc Lond 297:409–445

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalt: implications for mantle compositions and processes. Geol Soc Lond, Spec Publ 42:313–345

    Article  Google Scholar 

  • Tatsumi Y (2005) The subduction factory: how it operates in the evolving earth? GSA Today 15(7):4–10

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its compositions and evolution. Blackwell Scientific, Oxford

    Google Scholar 

  • Taylor RN, Nesbit RW (1998) Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu–Bonin Arc, Japan. Earth Planet Sci Lett 164(1):79–98

    Article  Google Scholar 

  • Tian W, Campbell IH, Allen CM, Guan P, Pan W, Chen MYH (2010) The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from Northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contrib Mineral Petrol 160:407–425

    Article  Google Scholar 

  • Torkian A (2011) The Parishan pluton in Qorveh area, an example for magma mingling process, southeastern Sanandaj, Iran. In: Srivantana RK (ed) Dyke Swarms: Keys for Geodynamic Interpretation springer-Verlag. Heidelberg, Berlin, pp 331–342

    Chapter  Google Scholar 

  • Torkian A, Furman T (2015) The significance of mafic microgranular enclaves in the petrogenesis of the Qorveh Granitoid complex, northern Sanandaj-Sirjan zone, Iran. J Min Geochem 192(2):117–133

    Google Scholar 

  • Torkian A, Khalili M, Sepahi AA (2008) Petrology and geochemistry of the I-type calc-alkaline Qorveh Granitoid complex, Sanandaj-Sirjan zone, western Iran. Neues Jb Miner Abh 185:131–142

    Article  Google Scholar 

  • Weaver BL, Tarney J (1984) Empirical approach to estimating the composition of the continental crust. Nature 310:575–577

    Article  Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Unwin Hyman, London, Boston, Sydney, Wellington

    Book  Google Scholar 

  • Wood DA (1980) The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet Sci Lett 50(1):11–30

    Article  Google Scholar 

  • Yajam S, Montero P, Scarrow JH, Ghalamghash J, Razavi SMH, Bea F (2015) The spatial and compositional evolution of the Late Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: SHRIMP zircon U-Pb and Sr and Nd isotope evidence. Geol Acta13 (1): 25–43

  • Zhao JH, Zhou MF (2007) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction related metasomatism in the upper mantle. Precambrian Res 152:27–47

    Article  Google Scholar 

  • Zhao JH, Zhou MF, Zheng JP (2010) Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze block, South China. Lithos 115:177–189

    Article  Google Scholar 

  • Zhu D, Mo X, Pan G, Zhao Z, Dong SY, Liao Z, Wang L, Zhou C (2008) Petrogenesis of the earliest early cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in South Tibet: interaction between the incubating Kerguelen plume and the eastern greater India lithosphere? Lithos 100(1):147–173

    Article  Google Scholar 

  • Zou HB, Zindler A, Xu XS, Qi Q (2000) Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations and tectonic significance. Chem Geol 171:33–47

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Bu-Ali Sina University and Brigham Young University (BYU) are acknowledged. The diligence of Shane Dailey, Danielle Spencer, and Phillip Cammans in the geochemistry laboratories at BYU also contributed to this project. Instrumentation grants from the U.S. National Science Foundation (EAR-0923495 and 99-10664) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Torkian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganeh, T.M., Torkian, A., Christiansen, E.H. et al. Petrogenesis of the Darvazeh mafic-intermediate intrusive bodies, Qorveh, Sanandaj-Sirjanzone, Iran. Arab J Geosci 11, 202 (2018). https://doi.org/10.1007/s12517-018-3554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3554-y

Keywords

Navigation