Skip to main content

Advertisement

Log in

The oceanic anoxic event 2 at Es Souabaa (Tebessa, NE Algeria): bio-events and stable isotope study

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

At the southern margin of the Tethys, the Es Souabaa area recorded traces of Oceanic Anoxic Event 2 (OAE2) around the Cenomanian-Turonian boundary (C/Tb). The dark, laminated, filament- and pyrite-bearing limestones represent the typical facies of this event. In terms of sedimentary environment, these features reflect a transgressive drowning that had induced hypoxia in these sedimentary environments. Such conditions favored the deposition and preservation of organic matter of marine origin, the distribution of which was controlled by paleogeography and halokinetic tectonics at that period. The OAE2 reached a climax between the last upper Cenomanian occurrence of Rotalipora cushmani and the lower Turonian occurrence of Whiteinella praehelvetica. Positive shift of the δ13C excursion along with relatively high total organic carbon (TOC) contents during OAE2 both indicate palaeo-environmental modifications enhanced by a significant change in primary marine productivity. Meanwhile, negative δ18O peaks in carbonates reflect increasing temperatures. Comparison of the data from this study with those from the neighboring Kalaat Senan section (Tunisia) suggests close similarities of events, although OAE2 is much more enhanced in Algeria.

Située sur la marge méridionale de la Téthys, la zone d’Es Souabaa porte les traces de l’évènement anoxique océanique 2 (EAO 2) au passage Cénomanien-Turonien. Les calcaires sombres, laminés, en plaquettes et à filaments, accompagnés de pyrite, constituent le faciès type de cet évènement. En termes de milieux de dépôt, ce faciès est l’expression d’un approfondissement du milieu lié à une transgression induisant une sous-oxygénation du milieu. Ces conditions ont favorisé le dépôt et la conservation de matière organique d’origine essentiellement marine; sa distribution dépend essentiellement de la paléogéographie et de la tectonique halocinétique dans la région. L’EAO 2 y est à son paroxysme entre la dernière occurrence de Rotalipora cushmani au Cénomanien supérieur et l’apparition des Whiteinella praehelvetica au Turonien inférieur. L’excursion positive du δ13C, ainsi que les teneurs élevées en carbone organique total (COT), au cours de l’EAO 2 indiquent des modifications paléo-environnementales exacerbées par une productivité primaire marine importante. L’excursion négative du δ18O des carbonates traduit, quant à elle, une augmentation des paléo-températures. La comparaison des données d’Es Souabaa avec celles connues à Kalaat Senan (en Tunisie), montre d’étroites similitudes avec une exacerbation de l’EAO 2 du côté algérien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Accarie H, Emmanuel L, Robaszynski F, Baudin F, Amédro F, Caron M, Deconinck J-F (1996) La géochimie isotopique du carbone (δ13C) comme outil stratigraphique. Application à la limite Cénomanien/Turonien en Tunisie centrale. CR Acad Sci Paris 322(IIa):579–586

    Google Scholar 

  • Amédro F, Robaszynski F (2008) Zones d’ammonites et de foraminifères du Vraconnien au Turonien : Une comparaison entre les domaines boréal et téthysien (NW Europe/ Tunisie centrale). Carnets de Géologie / Notebooks on Geology, Brest L02: 6–10

  • Amédro F, Hugues A, Robaszynski F (2005) Position de la limite Cénomanien-Turonien dans la Formation Bahloul de Tunisie centrale: Apports intégrés des ammonites et des isotopes du carbone. Eclogae Geol Helv 98:151–167

    Article  Google Scholar 

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS (eds) Stable isotopes in sedimentary geology, vol 10. SEPM, short course, Tulsa, pp 1–151

    Google Scholar 

  • Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present, geophysical monograph series, vol 32. AGU, Washington, pp 504–529

    Google Scholar 

  • Arthur MA, Dean WE, Pratt LM (1988) Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335:714–717

    Article  Google Scholar 

  • Azaiez H, Tanfous-Amri DT, Gabtni H, Bédir M, Soussi M (2008) Integrated geophysical study of the Triassic salt bodies’ geometry and evolution in Central Tunisia. Compt Rendus Geosci 340(1):10–19

    Article  Google Scholar 

  • Baudin F (1995) Depositional controls on Mesozoic source rocks in the Tethys. In: Huc AY (ed) Paleogeography, Paleoclimates and Source Rocks, vol 40. AAPG Studies in Geology, Tulsa, pp 191–211

    Google Scholar 

  • Bechtel A, Pevaz M, Püttmann W (1998) Role of organic matter and sulphate-reducing bacteria for metalsulphide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb deposit (Tunisia). Chem Geol 144:1–21

    Article  Google Scholar 

  • Bengtson P (1996) The Turonian stage and substage boundaries. Bull Inst R Sci Nat Belg Sci Terre 66(supp):69–79

    Google Scholar 

  • Bouzenoune A (1993) Minéralisation péridiapiriques de l’Aptien calcaire: les carbonates de fer du gisement hématitique de l’Ouenza (Algérie orientale). Thèse de doctorat, Université Paris VI, Paris

  • Bouzenoune A, Rouvier H, Thibiéroz J (1995) Trias de l'Ouenza : contexte diapirique, zonation minéralogique et conséquences métallogéniques. Bull Serv Géol Algérie 6(1):3–24

    Google Scholar 

  • Bozcu A, Baudin F, Danelian T, Vrielynck B, Bozcu M, Poisson A (2011) New evidence for the record of the Cenomanian-Turonian oceanic anoxic event (OAE2) in the pamphylian basin (Akdogan section, Antalya nappes, SW Turkey): comparison with surrounding basinal settings. Cretac Res 32:823–832

    Article  Google Scholar 

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie Centrale. Ann Mines Géol Tunis 18:1–345

    Google Scholar 

  • Caron M, Dall’Agnolo S, Accarie H, Barrera E, Kauffman EG, Amédro F, Robaszynski F (2006) High-resolution stratigraphy of the Cenomanian-Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios 39:171–200

    Article  Google Scholar 

  • Chaabane K (2015) Le Cénomanien-Turonien au nord de Tébessa (NE algérien). Thèse de Doctorat, Université Badji Mokhtar, Annaba, Algérie

  • Chaabane K, Salmi-Laouar S (2014) Les bioévènements dans la région d’El Guelb (El Aouinet, Tébessa, NE algérien) : Preuves pour l’évènement anoxique océanique EAO-2. Rev Sci Technol Synth 28:46–57

    Google Scholar 

  • Demaison GT, Moore GT (1980) Anoxic environments and oil source bed genesis. Org Geochem 2:9–31

    Article  Google Scholar 

  • Du Vivier ADC, Selby D, Sageman BB, Jarvis I, Gröcke DR, Voigt S (2014) Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth Planet Sci Lett 389:23–33

    Article  Google Scholar 

  • Du Vivier ADC, Jacobson AD, Lehn GO, Selby D, Hurtgen MT, Sageman BB (2015) Ca isotope stratigraphy across the Cenomanian-Turonian OAE-2: links between volcanism, seawater geochemistry, and the carbonate fractionation factor. Earth Planet Sci Lett 416:121–131

    Article  Google Scholar 

  • Dubourdieu G (1956) Etude géologique de la région de l’Ouenza (confins algéro-tunisien). Bull Publ Serv Carte Géol Algérie 10(1):1–659

    Google Scholar 

  • Handoh IC, Bigg GR, Jones EJW, Inoue M (1999) An ocean modelling study of the Cenomanian Atlantic: equatorial paleoupwelling, organic-rich sediments and the consequences for a connection between the proto-North and South Atlantic. Geophys Res Lett 26:223–226

    Article  Google Scholar 

  • Hardenbol J, Caron M, Amédro F, Dupuis C, Robaszynski F (1993) The Cenomanian-Turonian boundary in Central Tunisia in the context of a sequence-stratigraphic interpretation. Cretac Res 14:449–454

    Article  Google Scholar 

  • Herbin JP, Montadet L, Müller C, Gomez R, Thurow J, Wiedmann J (1986) Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In: Summerhayes CP, Shackleton NJ (eds) North American Palaeoceanography, vol 21. Geol Soc London Spec Publ, Bath, pp 389–422

    Google Scholar 

  • Herman AB, Spicer RA (1996) Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330–333

    Article  Google Scholar 

  • Hetzel A, März CH, Vogt C, Brumsack H-J (2011) Geochemical environment of Cenomanian-Turonian black shale deposition at Wunstorf (northern Germany). Cretac Res 32:480–494

    Article  Google Scholar 

  • Higgins M, Robinson RS, Husson JM, Carter SJ, Pearson A (2012) Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4 +. Proc Natl Acad Sci U S A 109:2269–2274

    Article  Google Scholar 

  • Hilbrecht H, Hoefs J (1986) Geochemical and palaeontological studies of the δ13C anomaly in boreal and north Tethyan Cenomanian-Turonian sediments in Germany and adjacent areas. Palaeogeogr Palaeoclimatol Palaeoecol 53:169–189

    Article  Google Scholar 

  • Ifrim C, Stinnesbeck W (2008) Cenomanian-Turonian high-resolution biostratigraphy of North-Eastern Mexico and its correlation with the GSSP and Europe. Cretac Res 29:943–956

    Article  Google Scholar 

  • Jenkyns HC (1980) Cretaceous anoxic events: from continents to oceans. J Geol Soc Lond 137:171–188

    Article  Google Scholar 

  • Jenkyns HC, Gale AS, Corfield RM (1994) Carbon- and oxygen-isotope stratigraphy of the English chalk and Italian Scaglia and its paleoclimatic significance. Geol Mag 131:1–34

    Article  Google Scholar 

  • Jones CE, Jenkyns HC (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci 301:112–149

    Article  Google Scholar 

  • Kennedy WJ, Gale AS (2006) The Cenomanian Stage. Proc Geol Assoc 117:187–205

    Article  Google Scholar 

  • Kennedy WJ, Walaszczyk I, Cobban WA (2005) The global boundary stratotype section and point for the base of the Turonian Stage of the Cretaceous: Pueblo, Colorado, U.S.A. Episodes 28(2):93–104

    Google Scholar 

  • Kerr AC (1998) Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary. J Geol Soc Lond 155:619–626

    Article  Google Scholar 

  • Kowalski WM, Hamimed M (2000) Diapirisme polyphasé ou glacier de sel albien? Dilemme du matériel triasique des confins algéro-tunisiens. Bull Serv Géol Algérie 11(1):29–60

    Google Scholar 

  • Kuhnt W, Herbin JP, Thurow J, Wiedmann J (1990) Distribution of Cenomanian-Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin. In: Huc AY (ed) Deposition of organic facies, vol 30. AAPG Stud Geol, Tulsa, pp 133–160

    Google Scholar 

  • Laffitte R (1939) Etude géologique de l'Aurès. Bull Serv Carte Géol Algérie 2:1–484

    Google Scholar 

  • Larson RL, Erba E (1999) Onset of the mid-cretaceous greenhouse in the Barremian–Aptian: igneous events and the biological, sedimentary, and geo-chemical responses. Paleoceanography 14:663–678

    Article  Google Scholar 

  • Lüning S, Kolonic S, Belhaj EM, Belhaj Z, Cota L, Baric G, Wagner T (2004) An integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa. Earth Sci Rev 64(1–2):51–117

    Article  Google Scholar 

  • Masse P, Chikhi-Aouimeur F (1982) La plate-forme carbonatée de l'Ouenza (Sud Constantinois, Algérie). Organisation et Dynamique durant l'Aptien supérieur. Géol Méditerr IX(3):259–267

    Google Scholar 

  • Meyers SR, Siewert SE, Singer BS, Sageman BB, Condon DJ, Obradovich JD, Jicha BR, Sawyer DA (2012) Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian–Turonian boundary interval, Western Interior Basin, USA. Geology 40:7–10

    Article  Google Scholar 

  • Mort H, Jacquat O, Adatte T, Steinmann P, Föllmi K, Matera V, Berner Z, Stüben D (2007a) The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: enhanced productivity and/or better preservation? Cretac Res 28:597–612

    Article  Google Scholar 

  • Mort HP, Adatte T, Föllmi KB, Keller G, Steinmann P, Matera V, Berner Z, Stüben D (2007b) Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology 35:483–486

    Article  Google Scholar 

  • Naili H, Belhaj Z, Robaszynski F, Caron M (1995) Présence de roches mère à faciès Bahloul vers la limite Cénomanien-Turonien dans la région de Tébessa (Algérie orientale). Notes Serv Géol Tunis 61:19–32

    Google Scholar 

  • Nederbragt AJ, Fiorentino A (1999) Stratigraphy and paleoceanography of the Cenomanian-Turonian boundary event in Oued Mellegue, North-Western Tunisia. Cretac Res 20:47–62

    Article  Google Scholar 

  • Negra MH, Zagrarni MF, Hanini A, Strasser A (2011) The filament event near the Cenomanian-Turonian boundary in Tunisia: filament origin and environmental signification. Bull Soc Géol Fr 182(6):507–519

    Article  Google Scholar 

  • Perthuisot V (1992) Les diapirs du Maghreb central et oriental : des diapirs variés, résultats d’une évolution structurale et pétrogénétique complexe. Bull Soc. Géol Fr 163(6):751–760

    Google Scholar 

  • Philip J, Babinot JF, Tronchetti G, Fourcade E, Ricou LE, Guiraud R, Bellion Y, Herbin J-P, Combes PJ, Cornet JJ, Dercourt J (1993) Late Cenomanian (94 to 92 Ma). In: Dercourt J, Ricou LE, Vrielynck (eds) Atlas Tethys palaeoenvironmental maps, explanatory notes. Gauthiers-Villars, Paris, pp 153–178

    Google Scholar 

  • Pogge von Strandmann PAE, Jenkyns HC, Woodfine RG (2013) Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat Geosci 6:668–672

    Article  Google Scholar 

  • Renard M (1985) Géochimie des carbonates pélagiques. Mise en évidence des fluctuations de la composition des eaux océaniques depuis 140 Ma. Essai de Chimiostratigraphie. Doc BRGM 85:1–650

    Google Scholar 

  • Ricou LE (1995) The plate tectonic history of the past Tethys Ocean. In: AEM N, Ricou LE, Vrielynck B, Dercourt J (eds) The ocean basins and margins. The Tethys Ocean Plenum, New-York, pp 3–70

    Google Scholar 

  • Robaszynski F, Caron M, Dupuis C, Amédro F, Gonzalez Donoso JM, Linares D, Hardenbol J, Gartner S, Calandra F, Deloffre R (1990) A tentative integrated stratigraphy in the Turonian of Central Tunisia: formations, zones and sequential stratigraphy in the Kalaat Senan area. Bull Centres Rech Explor Prod Elf-Aquitaine 14(1):213–384

    Google Scholar 

  • Robaszynski F, Hardenbol J, Caron M, Amédro F, Dupuis C, Gonzalez Donoso JM, Linares D, Gartner S (1993) Sequence stratigraphy in a distal environment: the Cenomanian of the Kalaat Senan region (Central Tunisian). Bull Centres Rech Explor Prod Elf-Aquitaine 17:395–433

    Google Scholar 

  • Robaszynski F, Zagrarni MF, Caron M, Amédro F (2010) The global bio-events at the Cenomanian-Turonian transition in the reduced Bahloul Formation of Bou Ghanem (Central Tunisia). Cretac Res 31:1–15

    Article  Google Scholar 

  • Rouvier H, Perthuisot V, Mansouri A (1985) Pb-Zn deposits and salt-bearing diapirs in southern Europe and North Africa. Econ Geol 80:666–687

    Article  Google Scholar 

  • Ruault-Djerrab M, Ferré B, Kechid-Benkherouf F (2012) Etude micropaléontologique du Cénomano-Turonien dans la région de Tébessa (NE Algérie) : implications paléoenvironnementales et recherche de l’empreinte de l’OAE2. Rev Paléobiol Genève 31(1):127–144

    Google Scholar 

  • Sageman BB, Meyers SR, Arthur MA (2006) Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology 34:125–128

    Article  Google Scholar 

  • Sami L (2011) Caractéristiques géochimiques des minéralisations à Pb-Zn, F, Ba, Cu, Fe et Hg des confins algéro-tunisiens. Thèse Doctorat, USTHB, Alger

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxia events: causes and consequences. Geol Mijnb 55:179–184

    Google Scholar 

  • Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987) The Cenomanian-Turonian oceanic anoxic event: I. Stratigraphy and distribution of organic-rich beds and the marine δ 13C excursion. In: Brooks J, Fleet AJ (eds) Marine and petroleum source rocks, vol 26. Geol Soc London spec Publ, Bath, pp 371–399

    Google Scholar 

  • Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull 64:67–87

    Google Scholar 

  • Scotese CR (2001) Atlas of earth history. Paleomap project, ISBN 0–9700020–0-9, Department of Geology, University of Texas at Arlington

  • Sinton CW, Duncan RA (1997) Potential links between ocean plateau volcanism and global ocean anoxia and the Cenomanian-Turonian boundary. Econ Geol 92:836–842

    Article  Google Scholar 

  • Soua M (2011) Le passage Cénomanien–Turonien en Tunisie: Biostratigraphie des foraminifères planctoniques et des radiolaires, chimiostratigraphie, cyclostratigraphie et stratigraphie. Thèse Doctorat, Université el Manar Tunis

  • Soua M, Tribovillard N (2007) Modèle de sédimentation au passage Cénomanien/Turonien pour la formation Bahloul en Tunisie. C R Geosci 339:692–701

    Article  Google Scholar 

  • Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084

    Article  Google Scholar 

  • Takashima R, Nishi H, Hayashi H, Okada H, Kawahata H, Yamanaka T, Fernando AG, Mampuku M (2009) Litho-, bio- and chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France. Palaeogeogr Palaeoclimatol Palaeoecol 273:61–74

    Article  Google Scholar 

  • Tanfous-Amri D, Bédir M, Soussi M, Azaiez H, Zitouni L, Inoubli MH, Ben Boubaker K (2005) Early halokinesis associated to the Jurassic rift faulting in Central Tunisia (Majoura-El Hfay area). CR. Geoscience 337(7):703–711

    Article  Google Scholar 

  • Thibiéroz J, Madre M (1976) Le gisement de sédirite du Dj. Ouenza (Algérie) est contrôlé par un golf de mer aptienne. Bull Soc Hist Nat Afr Nord 67(3–4):3–4

    Google Scholar 

  • Vila JM, Ben Youcef M, Chikhaoui M, Ghanmi M, Kechid-Benkhérouf F (1996) Les grands « glaciers de sel » sous-marins albiens des confins algéro-tunisiens. ETAP Tunis Mém 10:273–322

    Google Scholar 

  • Voigt S, Aurag A, Leis F, Kaplan U (2007) Late Cenomanian to middle Turonian high-resolution carbon isotope stratigraphy: new data from the Münsterland Cretaceous Basin, Germany. Earth Planet Sci Lett 253:196–210

    Article  Google Scholar 

  • Voigt S, Erbacher J, Mutterlose J, Weiss W, Westerhold T, Wiese F, Wilmsen M, Wonik T (2008) The Cenomanian–Turonian of the Wunstorf section (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsl Stratigr 43:65–89

    Article  Google Scholar 

  • Wan X, Wignall PB, Zhao W (2003) The Cenomanian-Turonian extinction and oceanic anoxic event: evidence from southern Tibet. Palaeogeogr Palaeoclimatol Palaeoecol 199:283–298

    Article  Google Scholar 

  • Westermann S, Caron M, Fiet N, Fleitmann D, Matera V, Adatte T, Föllmi KB (2010) Evidence for oxic conditions during oceanic anoxic event 2 in the northern Tethyan pelagic realm. Cretac Res 31:500–514

    Article  Google Scholar 

  • Wilson PA, Norris RD (2001) Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:425–429

    Article  Google Scholar 

Download references

Acknowledgements

SS-L and RL wish to express their gratitude to the University Badji Mokhtar Annaba for short-period grants to the Scottish Universities Environmental Research Centre, Glasgow, Scotland. The authors also express their sincere thanks to T. Donnelly, A. Tait, and J. Dougans of the Isotope Geosciences Unit (SUERC) for the isotope analysis and their technical support. They are also grateful to Pr. Salah Bouhlel for the TOC analysis and his valuable help during completion of this work. Two anonymous reviewers are particularly thanked for their comments on the early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Salmi-Laouar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmi-Laouar, S., Ferré, B., Chaabane, K. et al. The oceanic anoxic event 2 at Es Souabaa (Tebessa, NE Algeria): bio-events and stable isotope study. Arab J Geosci 11, 182 (2018). https://doi.org/10.1007/s12517-018-3509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3509-3

Keywords

Mots clés

Navigation